Discussion 6 - Energy Consumption Assuming a global impact, who is responsible f
ID: 106512 • Letter: D
Question
Discussion 6 - Energy Consumption Assuming a global impact, who is responsible for the manner in which energy is consumed? (Producer, consumer or community where it’s consumed?) At what point if ever do the rights of individuals need to be trumped by the rights of a community?Another way of asking the question is "Do we really live in a global community?" If you believe we don't or it is irrelevant state that and support your arguments with examples. Discussion 6 - Energy Consumption Assuming a global impact, who is responsible for the manner in which energy is consumed? (Producer, consumer or community where it’s consumed?) At what point if ever do the rights of individuals need to be trumped by the rights of a community?
Another way of asking the question is "Do we really live in a global community?" If you believe we don't or it is irrelevant state that and support your arguments with examples. Discussion 6 - Energy Consumption Assuming a global impact, who is responsible for the manner in which energy is consumed? (Producer, consumer or community where it’s consumed?) At what point if ever do the rights of individuals need to be trumped by the rights of a community?
Another way of asking the question is "Do we really live in a global community?" If you believe we don't or it is irrelevant state that and support your arguments with examples.
Explanation / Answer
Organisms can be either producers or consumers in terms of energy flow through an ecosystem. Producers convert energy from the environment into carbon bonds, such as those found in the sugar glucose. Plants are the most obvious examples of producers; plants take energy from sunlight and use it to convert carbon dioxide into glucose (or other sugars). Algae and cyanobacteria are also photosynthetic producers, like plants. Other producers include bacteria living around deep-sea vents. These bacteria take energy from chemicals coming from the Earth's interior and use it to make sugars. Other bacteria living deep underground can also produce sugars from such inorganic sources. Another word for producers is autotrophs.Consumers get their energy from the carbon bonds made by the producers. Another word for a consumer is a heterotroph.
A trophic level refers to the organisms position in the food chain. Autotrophs are at the base. Organisms that eat autotrophs are called herbivores or primary consumers. An organism that eats herbivores is a carnivore and a secondary consumer. A carnivore which eats a carnivore which eats a herbivore is a tertiary consumer, and so on. It is important to note that many animals do not specialize in their diets. Omnivores (such as humans) eat both animals and plants. Further, except for some specialists, most carnivores don't limit their diet to organisms of only one trophic level. Frogs, for instance, don't discriminate between herbivorous and carnivorous bugs in their diet. If it's the right size, and moving at the right distance, chances are the frog will eat it. It's not as if the frog has brain cells to waste wondering if it's going to mess up the food chain by being a secondary consumer one minute and a quaternary consumer the next.
Energy "flows" through the ecosystem in the form of carbon-carbon bonds. When respiration occurs, the carbon-carbon bonds are broken and the carbon is combined with oxygen to form carbon dioxide. This process releases the energy, which is either used by the organism (to move its muscles, digest food, excrete wastes, think, etc.) or the energy may be lost as heat. The dark arrows represent the movement of this energy. Note that all energy comes from the sun, and that the ultimate fate of all energy in ecosystems is to be lost as heat. Energy does not recycle.
Human civilization is dependent on agriculture. Only with agriculture can a few people feed the rest of the population; the part of the population freed from raising food can then go on to do all the things we associate with civilization. Agriculture means manipulating the environment to favor plant species that we can eat. In essence, humans manipulate competition, allowing favored species (crops) to thrive and thwarting species which might otherwise crowd them out (weeds). In essence, with agriculture we are creating a very simple ecosystem. At most, it has only three levels - producers (crops), primary consumers (livestock, humans) and secondary consumers (humans). This means that little energy is lost between tropic levels, since there are fewer trophic levels present.
This is good for humans, but what type of "ecosystem" have we created? Agricultural ecosystems have several problems. First, we create monocultures, or fields with only one crop. This is simplest for planting, weeding, and harvesting, but it also packs many similar plants into a small area, creating a situation ideal for disease and insect pests. In natural ecosystems, plants of one species are often scattered. Insects, which often specialize on feeding on a particular plant species, have a hard time finding the scattered plants. Without food, the insect populations are kept in check. In a field of corn however, even the most inept insect can find a new host plant with a jump in any direction. Likewise, disease is more easily spread if the plants are in close proximity. It takes lots of chemicals (pesticides) to keep a monoculture going.
Another problem with human agriculture is that we rely on relatively few plants for food. If the corn and rice crops failed worldwide in the same year, we would be hard-pressed to feed everyone (not that we're doing a great job of it now). Natural ecosystems usually have alternate sources of food available if one fails.
A final problem associated with agroecosystems is the problem of inorganic nutrient recycling. In a natural ecosystem, when a plant dies it fall to the ground and rots, and its inorganic nutrients are returned to the soil from which they were taken. In human agriculture, however, we harvest the crop, truck it away, and flush it down the toilet to be run off in the rivers to the ocean. Aside from the water pollution problems this causes, it should be obvious to you that the nutrients are not returned to the fields. They have to be replaced with chemical fertilizers, and that means mining, transportation, electricity, etc. Also, the chemical fertilizers tend to run off the fields (along with soil disrupted by cultivation) and further pollute the water.
Some solutions are at hand, but they bring on new problems, too. No-till farming uses herbicides to kill plants in a field; the crop is then planted through the dead plants without plowing up the soil. This reduced soil and fertilizer erosion, but the herbicides themselves may damage ecosystems. In many areas, sewage sludge is returned to fields to act as a fertilizer. This reduces the need for chemical fertilizers, but still requires a lot of energy to haul the sludge around. Further, if one is not careful, things such as household chemicals and heavy metals may contaminate the sewage sludge and biomagnify in the crops which we would then eat.
energy does not cycle through an ecosystem, chemicals do. The inorganic nutrients cycle through more than the organisms, however, they also enter into the atmosphere, the oceans, and even rocks. Since these chemicals cycle through both the biological and the geological world, we call the overall cycles biogeochemical cycles. Each chemical has its own unique cycle, but all of the cycles do have some things in common. Reservoirs are those parts of the cycle where the chemical is held in large quantities for long periods of time. In exchange pools, on the other hand, the chemical is held for only a short time. The length of time a chemical is held in an exchange pool or a reservoir is termed its residence time. The oceans are a reservoir for water, while a cloud is an exchange pool. Water may reside in an ocean for thousands of years, but in a cloud for a few days at best. The biotic community includes all living organisms. This community may serve as an exchange pool (although for some chemicals like carbon, bound in a sequoia for a thousand years, it may seem more like a reservoir), and also serve to move chemicals from one stage of the cycle to another. For instance, the trees of the tropical rain forest bring water up from the forest floor to be evaporated into the atmosphere. Likewise, coral endosymbionts take carbon from the water and turn it into limestone rock. The energy for most of the transportation of chemicals from one place to another is provided either by the sun or by the heat released from the mantle and core of the Earth.
So, mainly community is held responsible for this global impact.
Yes we live in a global community but our activities doesnt match upto that standards and is degrading the entire ecosystem day by day. In order to restore normalcy we must know Sustainable consumption and production is about promoting resource and energy efficiency, sustainable infrastructure, and providing access to basic services, green and decent jobs and a better quality of life for all. Its implementation helps to achieve overall development plans, reduce future economic, environmental and social costs, strengthen economic competitiveness and reduce poverty.
Sustainable consumption and production aims at “doing more and better with less,” increasing net welfare gains from economic activities by reducing resource use, degradation and pollution along the whole lifecycle, while increasing quality of life. It involves different stakeholders, including business, consumers, policy makers, researchers, scientists, retailers, media, and development cooperation agencies, among others.
It also requires a systemic approach and cooperation among actors operating in the supply chain, from producer to final consumer. It involves engaging consumers through awareness-raising and education on sustainable consumption and lifestyles, providing consumers with adequate information through standards and labels and engaging in sustainable public procurement, among others.