Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Planes (price = $10) Trains (Price = $15) Automobiles (price = $5) Units Total u

ID: 1090980 • Letter: P

Question

Planes (price = $10)

Trains (Price = $15)

Automobiles (price = $5)

Units

Total utility (TU)

Marg. Utility (MU)

MU per dollar

Units

Total utility (TU)

Marg. Utility (MU)

MU per dollar

Units

Total utility (TU)

Marg. Utility (MU)

MU per dollar

0

0

--

--

0

0

--

--

0

0

--

--

1

100

1

300

1

60

2

190

2

540

2

110

3

270

3

720

3

150

4

340

4

870

4

180

5

400

5

990

5

205

6

450

6

1080

6

225

7

490

7

1140

7

235

8

510

8

1170

8

240

Please answer the following questions. You must show all of your work where calculations are required:

a.Fill in the columns for MU and MU/P for each of the three goods to complete the table above (6pts)

b.What is the combination of planes, trains, and automobiles Kim should choose in order to maximize her total utility?   How do you know this is the utility maximizing combination? Include a brief explanation of 25 words to receive full credit. (2pts)

c.Calculate Kim

Planes (price = $10)

Trains (Price = $15)

Automobiles (price = $5)

Units

Total utility (TU)

Marg. Utility (MU)

MU per dollar

Units

Total utility (TU)

Marg. Utility (MU)

MU per dollar

Units

Total utility (TU)

Marg. Utility (MU)

MU per dollar

0

0

--

--

0

0

--

--

0

0

--

--

1

100

1

300

1

60

2

190

2

540

2

110

3

270

3

720

3

150

4

340

4

870

4

180

5

400

5

990

5

205

6

450

6

1080

6

225

7

490

7

1140

7

235

8

510

8

1170

8

240

Explanation / Answer

Marginal utility is defined as the increase in utility by buying one extra unit of the product. So here we need to find how much the utility has increased from the previous one. Subtracting successive utilities would give you the corresponding marginal utilities.

Marginal utility by the cost the of the product will give the marginal utility per dollar. The same has been summarised below

Planes (price = $10)

Trains (Price = $15)

Automobiles (price = $5)

Units

Total utility (TU)

Marg. Utility (MU)

MU per dollar

Units

Total utility (TU)

Marg. Utility (MU)

MU per dollar

Units

Total utility (TU)

Marg. Utility (MU)

MU per dollar

0

0

--

--

0

0

--

--

0

0

--

--

1

100

1

300

1

60

2

190

2

540

2

110

3

270

3

720

3

150

4

340

4

870

4

180

5

400

5

990

5

205

6

450

6

1080

6

225

7

490

7

1140

7

235

8

510

8

1170

8

240

b) If i get 10 units of utility by spending $1 on product A and 5 units of utilities by spending on product B then obviously i would buy product A. In the similar fashion here too we to incorporate the notion of utility per dollar. Thus at our equilibrium point the money that we spend on each item should fetch the same marginal utility per dollar.

We also need to keep in mind the other constraint that we have is our income of $160. All the items bought should not cross $160.

So $10*A + $15*B + $5*C = $160

You can solve this by either bring one of the terms to the right hand side and then consider than the marginal utilities are same and the A,B and C have to be integers. Which would leave you with few choices and you have try out each of those combinations or you can use an online trial and error calculator.

Upon solving we get;

A = 5

B = 6

C = 4

i.e., Planes = 5; trains = 6; automobiles = 4.

c) Looking at the table we get the corresponding values of total utilities for each product at a given quantity so the total utility is $500 + $1080 + $180 = $1760

Planes (price = $10)

Trains (Price = $15)

Automobiles (price = $5)

Units

Total utility (TU)

Marg. Utility (MU)

MU per dollar

Units

Total utility (TU)

Marg. Utility (MU)

MU per dollar

Units

Total utility (TU)

Marg. Utility (MU)

MU per dollar

0

0

--

--

0

0

--

--

0

0

--

--

1

100

100 10

1

300

300 20

1

60

60 12

2

190

90 9

2

540

240 16

2

110

50 10

3

270

80 8

3

720

180 12

3

150

40 8

4

340

70 7

4

870

150 10

4

180

30 6

5

400

60 6

5

990

120 8

5

205

25 5

6

450

50 5

6

1080

90 6

6

225

20 4

7

490

40 4

7

1140

60 4

7

235

10 2

8

510

20 2

8

1170

30 2

8

240