Describe how the decreased number of landfills has affected the way that local g
ID: 110641 • Letter: D
Question
Describe how the decreased number of landfills has affected the way that local governments dispose of the waste they collect from area citizens. Recycling programs have become quite common in municipalities across the U.S. Explain why local governments would bother to recycle when the cost of the programs oftentimes exceeds the value of the raw materials being recycled? Part II - Waste and Pollution In addition to escaping leachate from landfills, surface water and groundwater can become contaminated by the disposal of sewage and release of chemicals from industrial and agricultural applications. With respect to human sewage, most U.S. municipalities collect wastewater from individual homes and businesses via underground pipes, which then carry it to a centralized treatment plant as illustrated in Figure 14.3. Most of the organic matter and bacteria within the sewage are then broken down and removed before the treated wastewater is discharged into the environment-typically into a stream. However, the treatment processes are fairly ineffective at removing nutrients, such as nitrate (NO_3^-), and various pharmaceuticals (medicines) that pass through the human digestive system. Figure 14.3 - Illustration showing a combined municipal sewer and storm water collection system commonly found in the U.S.Explanation / Answer
Question 7:
Even with the use of source reduction, recycling, and combustion, there will always be waste that ultimately must be disposed of in landfills. According to the EPA's Municipal Solid Waste in the United States: 1999 Facts and Figures, landfill disposal still remains the most widely used waste management method (accounting for approximately 57.4% of the total). Many communities now face difficulties siting new landfills largely because of increased citizen and local government concerns about the potential health risks and aesthetics of situating a landfill in their neighborhoods. The EPA issued new technical standards for MSW landfills in 1991. These addressed several aspects of landfill management, including location restrictions, design and operating criteria, and groundwater monitoring. Even with national landfill standards, decreasing landfill capacity and the difficulties associated with the construction of new landfills remain significant issues.
The EPA has explored several solutions to conserving landfill capacity, including the viability of engineering materials such as plastics to be less resistant to degradation or, in other words, biodegradable. Biodegradable materials can be broken down into simpler substances (e.g., elements and compounds) by bacteria or other natural decomposers. Paper and most organic wastes such as food and leaves are biodegradable. In contrast, nonbiodegradable substances cannot be broken down in the environment by natural processes. In general, degradation in landfills occurs very slowly due to modern landfill design criteria, which minimize waste exposure to sunlight, air, and moisture. In fact, even biodegradable organic materials might take decades to decompose in a landfill; carrots and cabbage have been discovered in recognizable form after several years of burial. Studies indicate that biodegradable materials may help diminish risks to wildlife and aesthetic damage (i.e., discarded six-pack beverage rings and wrappers), but will not reduce the volume or toxicity of waste nor provide a solution to decreasing landfill capacity.
In continuing efforts to conserve landfill space and reduce waste toxicity, the EPA is currently investigating the potential benefits and drawbacks associated with the use of bioreactor landfills. Bioreactor landfills are designed to transform and more quickly stabilize the decomposable organic constituents of the waste stream through the controlled injection of liquid or air to enhance microbiological degradation processes. In other words, by controlling the moisture content, bioreactor landfills facilitate microbial decomposition of waste. Recent findings show that bioreactor landfills successfully expedite the degradation process (e.g., from decades to years), offer a 15 to 30 percent gain in landfill space, and may reduce postclosure care and leachate disposal costs. In addition, the bioreactor technology significantly increases landfill gas emissions, which are captured and often used beneficially for energy recovery. Due to their complexity, however, bioreactor landfills may be more costly, and concerns have been raised regarding increased odors, liner instability, and surface seeps. Working in conjunction with state and local governments and private companies, the EPA has initiated several research and pilot projects to examine the effectiveness of this innovative technology.
Question 8:
The cost effectiveness of creating the additional jobs remains unproven. According to the U.S. Recycling Economic Informational Study, there are over 50,000 recycling establishments that have created over a million jobs in the US. Two years after New York City declared that implementing recycling programs would be "a drain on the city," New York City leaders realized that an efficient recycling system could save the city over $20 million. Municipalities often see fiscal benefits from implementing recycling programs, largely due to the reduced landfill costs. Economic analysis of recycling does not include what economists call externalities, which are unpriced costs and benefits that accrue to individuals outside of private transactions. Examples include: decreased air pollution and greenhouse gases from incineration, reduced hazardous waste leaching from landfills, reduced energy consumption, and reduced waste and resource consumption, which leads to a reduction in environmentally damaging mining and timber activity. About 4,000 minerals are known, of these only a few hundred minerals in the world are relatively common. Known reserves of phosphorus will be exhausted within the next 100 years at current rates of usage. Without mechanisms such as taxes or subsidies to internalize externalities, businesses may ignore them despite the costs imposed on society. To make such nonfiscal benefits economically relevant, advocates have pushed for legislative action to increase the demand for recycled materials. The United States Environmental Protection Agency (EPA) has concluded in favor of recycling, saying that recycling efforts reduced the country's carbon emissions by a net 49 million metric tonnes in 2005. In the United Kingdom, the Waste and Resources Action Programme stated that Great Britain's recycling efforts reduce CO2 emissions by 10–15 million tonnes a year. Recycling is more efficient in densely populated areas, as there are economies of scale involved.