Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A4 Industrial produces hydraulic pumps using a process that can be approximated

ID: 1113205 • Letter: A

Question

A4 Industrial produces hydraulic pumps using a process that can be approximated by a Cobb-Douglas production function. The production method uses tool shops that contain pieces of equipment that can be operated by a varying number of workers. The number of shops (units of variable capital) used during the month are given. The firm also hires skilled workers, and the number of full-time skilled workers hired for the month is given. The monthly output (number of pumps) produced is also given. The manager wants to estimate the Cobb-Douglas production function in order to determine the number of shops and number of workers required to achieve various levels of production.

The manager thus asks you to estimate a log-linear regression model based on the following monthly data over the last 2 years.

Q = quantity of boats produced per year

L = number of full-time workers per year

K = capital (number of shops) rented per year

P = average selling price per pump sold

Month

t

L

K

Q

P

Oct-15

1

120

25

1150

$438.93

Nov-15

2

122

25

1170

$437.88

Dec-15

3

118

26

1160

$438.46

Jan-16

4

110

26

1122

$440.14

Feb-16

5

116

24

1128

$439.96

Mar-16

6

120

24

1146

$439.01

Apr-16

7

124

27

1193

$436.90

May-16

8

125

27

1202

$436.38

Jun-16

9

130

28

1235

$434.92

Jul-16

10

127

28

1219

$435.58

Aug-16

11

128

27

1216

$435.85

Sep-16

12

136

27

1250

$434.09

Oct-16

13

140

27

1265

$433.54

Nov-16

14

135

28

1255

$433.85

Dec-16

15

130

28

1233

$435.05

Jan-17

16

135

29

1264

$433.43

Feb-17

17

128

29

1235

$434.95

Mar-17

18

138

30

1286

$432.39

Apr-17

19

145

30

1315

$431.19

May-17

20

141

28

1282

$432.58

Jun-17

21

134

29

1260

$433.78

Jul-17

22

140

29.0

1290

$432.20

Aug-17

23

142

30.0

1300

$431.89

Sep-17

24

146

30.0

1324

$430.72

1. Type the OLS log-linear regression production function,

with t-statistics in parentheses below each of the three coefficients.

Round coefficients to 4 decimal places, and round t-statistics to 2 decimal places.

ln Q =   #    +   # ln L +   # ln K

                           (#)    (#)         (#)

Month

t

L

K

Q

P

Oct-15

1

120

25

1150

$438.93

Nov-15

2

122

25

1170

$437.88

Dec-15

3

118

26

1160

$438.46

Jan-16

4

110

26

1122

$440.14

Feb-16

5

116

24

1128

$439.96

Mar-16

6

120

24

1146

$439.01

Apr-16

7

124

27

1193

$436.90

May-16

8

125

27

1202

$436.38

Jun-16

9

130

28

1235

$434.92

Jul-16

10

127

28

1219

$435.58

Aug-16

11

128

27

1216

$435.85

Sep-16

12

136

27

1250

$434.09

Oct-16

13

140

27

1265

$433.54

Nov-16

14

135

28

1255

$433.85

Dec-16

15

130

28

1233

$435.05

Jan-17

16

135

29

1264

$433.43

Feb-17

17

128

29

1235

$434.95

Mar-17

18

138

30

1286

$432.39

Apr-17

19

145

30

1315

$431.19

May-17

20

141

28

1282

$432.58

Jun-17

21

134

29

1260

$433.78

Jul-17

22

140

29.0

1290

$432.20

Aug-17

23

142

30.0

1300

$431.89

Sep-17

24

146

30.0

1324

$430.72

Explanation / Answer

Use command in STATA tsset t gen ln_Q = log(q) gen ln_L =log(l) gen ln_K =log(k) reg ln_Q ln_L ln_K Results lnQ = 4.08 + 0.4668*lnL + 0.2278*lnK            (137.36) (45.40)        (19.89)