A04. Calculate the maximum height of the object above the ground below the cliff
ID: 1330793 • Letter: A
Question
A04. Calculate the maximum height of the object above the ground below the cliff.
A05. Find the velocity vector in polar form at the instant when the object hits the ground
Explanation / Answer
a) Hmax = h + voy^2/(2*g)
= h + (vo*sin(thet))^2/(2*g)
= 200 + (60*sin(60))^2/(2*9.8)
= 337.8 m
b) x-component of velocity of projectile when it hits the ground, vx = vo*cos(60) = 60*cos(60) = 30 m/s
let vy is the component of velocity.
Apply^2, Vy^2 - Voy^2 = 2*g*h
vy = -sqrt(voy^2 + 2*g*h)
= -sqrt((60*sin(60))^2 + 2*9.8*200)
= -81.4 m/s
so, v = sqrt(vx^2 + vy^2)
= sqrt(30^2 + 81.4^2)
= 85.75 m/s
theta = tan^-1(vy/vx)
= tan^-1(-81.4/30)
= 290.2 degrees with +x axis in counetr closkwise direction.
so, v = ( 85.75 m/s, 290.2 degrees)