Question
A car of mass m = 800 kg traveling at55.0 km/h enters a banked turn covered with ice. The road isbanked at an angle , and there is no friction between theroad and the car's tires. Now, suppose that the curve is level (=0) and that theice has melted, so that there is a coefficient of staticfriction between the road and the car's tires. What is What is min, the minimum value of thecoefficient of static friction between the tires and the roadrequired to prevent the car from slipping? Assume that the car'sspeed is still 55.0 km/h and that the radius of the curve is65.4m. A car of mass m = 800 kg traveling at55.0 km/h enters a banked turn covered with ice. The road isbanked at an angle , and there is no friction between theroad and the car's tires. Now, suppose that the curve is level (=0) and that theice has melted, so that there is a coefficient of staticfriction between the road and the car's tires. What is What is min, the minimum value of thecoefficient of static friction between the tires and the roadrequired to prevent the car from slipping? Assume that the car'sspeed is still 55.0 km/h and that the radius of the curve is65.4m.
Explanation / Answer
55.0 km/h = 15.278 m/s . then... . u m g = mv2 / r . u = v2 / g r = 15.2782 / 9.80 * 65.4 = 0.364 isthe minimum coeff of static friction required