Please show work so I can learn Solve the initial value problem of the system y1
ID: 1813373 • Letter: P
Question
Please show work so I can learn
Solve the initial value problem of the system
y1' = 3y1 - 3y2
y'2 = 3y1 + 3y2
given y1(0) = 0, y2(0) = 2.Verify the result using MATLAB.
a. y1 = 2e^(3t)sin(3t),
y2 = -2e^(3t)cos(3t),
b. y1 = -2e^(3t)sin(3t),
y2 = 2e^(3t)cos(3t)
c. y1 = -2e^(-3t)sin(3t),
y2 = 2e^(-3t)cos(3t)
d. y1 = -2e^(3t)cos(3t),
y2 = 2e^(3t)sin(3t)
Explanation / Answer
L ( y') = SY - y(0)
on applying Laplace's transform,
SY1 - 0 = 3Y1 - 3Y2
SY2 - 2 = 3Y1 + 3Y2
FROM 1ST EQN,
Y1 = -3Y2 / (S-3)
SUBSTITUTE IN EQN2
SY2 - 2 = -9Y2/(S-3) + 3Y2
Y2 = 2 / [ (S-3)^2 + 9 ]/ (S-3)
= 2(S-3) / [ (S-3)^2 + 9 ]
i.e y2 (t) = 2e^(3t)cos(3t)
FROM 2nd EQN,
Y2 = [ 3Y1 + 2 ] / (S-3)
SUBSTITUTE IN EQN1
SY1 - 0 = 3Y1 - { 9Y1 + 6} / (S-3)
Y1 = - 6/ [(S-3)^2 + 9] (-6 = -2 X 3)
i.e y1(t) = -2e^(3t)sin(3t)
i.e option B