Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Please show the work so I learn Find a general solution of the system: y1\'=3y1

ID: 1813376 • Letter: P

Question

Please show the work so I learn  

Find a general solution of the system:


                       y1'=3y1 - 4y2 + 20cos(t)
                      y'2=y(base)1 - 2y(base)2


a.)                 y1=c1e^-t + 4c2e^t - 14cos(t) + 2sin(t),
                     y2=c1e^-t + c2e^t - 6cos(t) - 2sin(t)
                 
b.)                 y1=c1e^-t + 4c2e^2t - 14cos(t) + 2sin(t),
                     y2=c1e^-t + c2e^2t - 6cos(t) - 2sin(t)
                 
c.)                 y1=c1e^-t + 4c2e^2t + 14cos(t) + 2sin(t),
                    y2=c1e^-t + c2e^2t + 6cos(t) - 2sin(t)
                 
d.)                 y1=c1e^6t + c2e^-6t - 1/4,
                    y2=c1e^6t - c2e^-6t - t


                 e.) None of the above; see Problem Work

Explanation / Answer

y1'=3y1 - 4y2 + 20cos(t)


y'2=y1 - 2y2



matrix A =

[3    -4]

[1    -2]


eigen values :


|y-3      4|

|-1    y+2| = 0


==>


(y-3)(y+2) + 4 = 0


==>


y^2 - y - 2 = 0


==>


y = 2, -1


eigen vector of y = -1 is


[-4      4] [x] = [0]

[-1      1] [y]    [0]


==>


x = y


eigen vector V1 =

[1]

[1]


for y = 2


[-1      4] [x] = [0]

[-1      4] [y]    [0]


===>


x = 4y


Eigen vector is V2 =

[4]

[1]




Complementary solution is


Yc = C1*e^(-t) * V1 + C2 * e^(2t)*V2


==>


Yc = C1*e^-t *

[1]

[1]


+ C2*e^(2t)*

[4]

[1]