Consider two finite-length sequences, x[n] = { 0 n3 and h[n] = 28[n] - delta[n -
ID: 1841026 • Letter: C
Question
Consider two finite-length sequences, x[n] = { 0 n3 and h[n] = 28[n] - delta[n - 1] - delta[n - 2]. Determine and plot the discrete convolution y[n] = x[n] * h[n] for these two sequences. Note that the length of x[n] is 4 and the length of h[n] is 3 samples. Therefore, each sequence can be represented by an N-point DFT with N ge 4. Zero padding would be used to extend the lengths when N > 4. Determine expressions for the N-point DFTs X[k] and H[k]. Do not obtain numerical answers-instead express your answers in terms of e-j(2 pi n/N)k. Now form the product Y[k] = X[k]H[k] again expressed in terms of e-j(2 pi/N)k. From the result in part (c), determine the IDFT of Y[k] when N = 6. Compare your answer to the result of part (a). Repeat when N = 4. In this case, the complex exponentials must be changed so that the exponents are less than 2 pi (i.e., e-j(2 pi/N)(N+k) = e-/(2 pi/N)k if 0Explanation / Answer
clear all;
close all;
%x=[1 2 3 4]
x=input('enter the input sequence');
n=input('enter the lenth of DFT');
subplot(4,1,1);
stem(x);
xlabel('time');
ylabel('amplitude');
title('input signal');
y=fft(x,n);
subplot(4,1,2);
stem(y);
xlabel('frequency');
ylabel('amplitude');
title('discrete fourier transform');
z=abs(y);
subplot(4,1,3);
stem(z);
xlabel('frequency');
ylabel('magnitude');
u=angle(y);
subplot(4,1,4);
stem(u);
xlabel('frequency');
ylabel('phase plot');