Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The figures show a hypothetical planetary system at two different times. The spa

ID: 2240595 • Letter: T

Question

The figures show a hypothetical planetary system at two different times. The spatial coordinates (x, y) of the bodies are given in Astronomical Units (AU). In the first picture, the velocity of the center of mass of the system is zero. Find the magnitude, dS, of the star's displacement.

The figures show a hypothetical planetary system at two different times. The spatial coordinates (x, y) of the bodies are given in Astronomical Units (AU). In the first picture, the velocity of the center of mass of the system is zero. Find the magnitude, ds, of the star's displacement.

Explanation / Answer

x direction:

ms xsi + mA xAi + mB xBi + mC xCi = ms xsf + mA xAf + mB xBf + mC xCf

2.7529e30 * 0 + 2.9289e28 * 0.3891 + 6.2841e26 * 0.9349 + 7.5841e27 * 0 = 2.7529e30 * xsf + 2.9289e28 * 0 + 6.2841e26 * (-1.8495) + 7.5841e27 * (-0.8443)

==> xsf = 0.007101366 AU


y direction:

ms ysi + mA yAi + mB yBi + mC yCi = ms ysf + mA yAf + mB yBf + mC yCf

2.7529e30 * 0 + 2.9289e28 * 0 + 6.2841e26 * 1.5929 + 7.5841e27 * 1.6711 = 2.7529e30 * ysf + 2.9289e28 * (-0.1959) + 6.2841e26 * (0) + 7.5841e27 * (-0.8445)

==> ysf = 0.0093782089 AU


====> ds = srt(xsf^2 + ysf^2) = sqrt(0.007101366y2 + 0.0093782089y2) = 0.0117635 = 0.011764 AU