Solve using Matlabb all parts and if possible please mention book to solve these
ID: 2249297 • Letter: S
Question
Solve using Matlabb all parts and if possible please mention book to solve these types of problems.It is Signals and Systems Lab (EE230-L) home work.we perform matlab different functions by using signal and system lab manual .
a:
Generate Impulse response of following L TI sytem:
Y[n] + 0.71y[n-1] - 0.46y[n-2] - 0.62y[n-3] = 0.9x[n] - 0.45x[n-1] + 0.35x[n-2] + 0.002x[n-3]
b:
Generate the step response of LTI system given in a
c: For each of the following sequences determine the DTFT X( &w ). Plot the magnitude and angle of
X(& w).
1. X[n]= {4 ,3,2,1,0,-1,-2, -3 , -4} Comment on the angle plot.
i
2. X(n)=(n+2)(-0. 7r 1 u(n-2)
d: A symmetric rectangular pulse is given by
Signals and Systems lab (EE230-L)
RN(n)= {lfor-N _ :s; n :s; N
Ootherwzse
Determine the DTFT for N=5, 15, 25,100. Scale the DTFT so that X ( ei 0 ) = 1. Plot the
normalized DTFT over [- 1r, 1r]. Study these plots and comment on their behavior as a
function of N.
e: Find and plot the frequency response of the given functions using freqz.
x(n) - x(n - 1)
f(n) =
2
f (n)= x(n)+x(n-l)+x(n-2)
3
f: Find the CTFT of the following signals using symbolic Math's toolbox.
1. 2tu(t)-35(t)
2. iu(t)-e- 2 tu(t)
Explanation / Answer
a) and b) :- to find step and impulse response
num=input('enter num') // enter left side coefficients//
den=input('enter den') // enter right side coefficients//
H=tf( num,den) //gives transfer function//
subplot(41,1)
impulse(H) //impulse response//
subplot(4,1,2)
step(H) //step response//
c) to find dtft
Y=input('Enter the sequence : ')
N=length(x)
X=fft(Y,N)
Plot [abs(X)]
subplot(4,1,3)
plot(w/pi,abs(X))
title(‘absolule’)
subplot(4,1,4)
plot(w/pi,angle(X))
title(‘angle’)
e) dtft using FREQZ
num=input('enter num') // enter left side coefficients//
den=input('enter den') // enter right side coefficients//
w=-4*pi:2*pi/252:4*pi;
h= freqz(num,den,w);
subplot(2,1,1)
plot(w/pi,abs(h))
title(‘absolule’)
subplot(2,1,2)
plot(w/pi,angle(h))
title(‘angle’)