Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Assume that interest rate is 10% (=0.10), time to expiration is 180 days, and th

ID: 2750215 • Letter: A

Question

Assume that interest rate is 10% (=0.10), time to expiration is 180 days, and the current price of the July gasoline contract is USD 3.15/gal. Compute the values of a 3.00 call and a 3.00 put using Black’s option pricing model. Use the historical gasoline futures prices below to obtain the needed volatility estimate! You can solve this by hand or with a spreadsheet program such as Excel. If you chose to use a spreadsheet program, you need to turn in a printout of your work. Furthermore, indicate at each step what you did. Also, please write down the formula for each cell next to it so that it is clear what you calculated at each stage of the computation.

observation

futures closing price

ln(Rt)

(ln(Rt)-m)^2

1

3.070

2

3.044

3

3.071

4

3.011

5

3.099

6

3.067

7

3.048

8

3.022

9

3.021

10

3.032

11

3.020

12

3.021

13

3.020

14

3.059

15

3.050

16

3.064

17

3.005

18

3.000

19

3.040

20

3.011

21

3.069

22

3.039

23

3.068

24

3.011

25

3.098

26

3.033

27

3.091

28

3.055

29

3.088

30

3.055

31

3.003

observation

futures closing price

ln(Rt)

(ln(Rt)-m)^2

1

3.070

2

3.044

3

3.071

4

3.011

5

3.099

6

3.067

7

3.048

8

3.022

9

3.021

10

3.032

11

3.020

12

3.021

13

3.020

14

3.059

15

3.050

16

3.064

17

3.005

18

3.000

19

3.040

20

3.011

21

3.069

22

3.039

23

3.068

24

3.011

25

3.098

26

3.033

27

3.091

28

3.055

29

3.088

30

3.055

31

3.003

Explanation / Answer

observation futures closing price ln(Rt)(mean-closing price) (ln(Rt)-m)^2 1 3.07 -0.025 0.000625 2 3.044 0.001 0.000001 3 3.071 -0.026 0.000676 4 3.011 0.034 0.001156 5 3.099 -0.054 0.002916 6 3.067 -0.022 0.000484 7 3.048 -0.003 0.000009 8 3.022 0.023 0.000529 9 3.021 0.024 0.000576 10 3.032 0.013 0.000169 11 3.02 0.025 0.000625 12 3.021 0.024 0.000576 13 3.02 0.025 0.000625 14 3.059 -0.014 0.000196 15 3.05 -0.005 0.000025 16 3.064 -0.019 0.000361 17 3.005 0.04 0.001600 18 3 0.045 0.002025 19 3.04 0.005 0.000025 20 3.011 0.034 0.001156 21 3.069 -0.024 0.000576 22 3.039 0.006 0.000036 23 3.068 -0.023 0.000529 24 3.011 0.034 0.001156 25 3.098 -0.053 0.002809 26 3.033 0.012 0.000144 27 3.091 -0.046 0.002116 28 3.055 -0.01 0.000100 29 3.088 -0.043 0.001849 30 3.055 -0.01 0.000100 31 3.003 0.042 0.001764 94.385 0.025534 Mean 3.044677419 94.385/31 Variance 0.025534 Standard deviation= 0.16 SQRT of (0.025534) Black-Scholes Option Value Input Data Stock Price now (P) 3.15 Exercise Price of Option (EX) 3.308 Number of periods to Exercise in years (t) 0.5 Compounded Risk-Free Interest Rate (rf) 10.00% Standard Deviation (annualized s) 16.00% Output Data Present Value of Exercise Price (PV(EX)) 3.1462 s*t^.5 0.1131 d1 0.0673 d2 -0.0459 Delta N(d1) Normal Cumulative Density Function 0.5268 Bank Loan N(d2)*PV(EX) 1.5155 Value of Call 0.1439 Value of Put 0.1401