Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Bond J is a 7.8 percent coupon bond. Bond K is a 11.8 percent coupon bond. Both

ID: 2767788 • Letter: B

Question

Bond J is a 7.8 percent coupon bond. Bond K is a 11.8 percent coupon bond. Both bonds have 12 years to maturity and have a YTM of 8.7 percent.

           

If interest rates suddenly rise by 2.4 percent, what is the percentage price change of these bonds?(Negative values should be indicated by a minus sign. Do not round intermediate calculations. Enter your answers as a percent rounded to 2 decimal places. Omit the "%" sign in your response.)

          

         

If interest rates suddenly fall by 2.4 percent, what is the percentage price change of these bonds? (Do not round intermediate calculations. Enter your answers as a percent rounded to 2 decimal places. Omit the "%" sign in your response.)

             

Bond J is a 7.8 percent coupon bond. Bond K is a 11.8 percent coupon bond. Both bonds have 12 years to maturity and have a YTM of 8.7 percent.

Explanation / Answer

Bond J:

Bond Price= C x [1-{1/(1+r)n}]/r + M/(1+r)n

M= Face Value=$1,000 assumed

C= Coupon Amount= 1,000 x 7.8%=$78

r=interest rate =8.7% or 0.087

n= 12 years

Bond Price = 78 x [1-{1(1 +0.087)12]/0.087 + 1,000/(1+0.087)12

                  =78 x [1-{1/(1.087)12}/0.087 + 1,000/(1.087)12

                  = 78 x [1- 1/2.721162824/]0.087 + 1,000/2.721162824

                  = 78 x (1- 0.367489954]0.087+367.49

                      =78 x [0.63251]/0.087+367.49

                       =78 x 7.27023 +367.49

                       =567.078+367.49

                         =$934.57

--------------------------------------------------------------------------------------------------------------------------

Bond K:

Bond Price= C x [1-{1/(1+r)n}]/r + M/(1+r)n

M= Face Value=$1,000 assumed

C= Coupon Amount= 1,000 x 11.8%=118

r=interest rate =8.7% or 0.087

n= 12 years

Bond Price = 118 x [1-{1(1 +0.087)12]/0.087 + 1,000/(1+0.087)12

                  =118x [1-{1/(1.087)12}/0.087 + 1,000/(1.087)12

                  = 118x [1- 1/2.721162824/]0.087 + 1,000/2.721162824

                  = 118 x (1- 0.367489954]0.087+367.49

                      =118x [0.63251]/0.087+367.49

                       =118x 7.27023 +367.49

                       = 857.8871893+367.49

                         =$        1,225.38

--------------------------------------------------------------------------------------------------

If YTM raises from 8.7 to 11.1 (i.e 2.4 % increase)

Bond J:

Bond Price= C x [1-{1/(1+r)n}]/r + M/(1+r)n

M= Face Value=$1,000 assumed

C= Coupon Amount= 1,000 x 7.8%=$78

r=interest rate =11.1% or 0.111

n= 12 years

Bond Price = 78 x [1-{1(1 +0.111)12]/0.111 + 1,000/(1+0.111)12

                  =78 x [1-{1/(1.111)12}/0.111 + 1,000/(1.111)12

                  = 78 x [1- 1/ 3.53645965/]0.111 + 1,000/ 3.53645965

                  = 78 x (1- 0.282768672]0.111+ 282.7686723

                      =78 x [0.717231328]/0.111+ 282.7686723

                       =78 x 6.461543493 + 282.7686723

                       = 504.0003924+ 282.7686723

                         =$ 786.77

-----------------------------------------------------------------------------------------------------------------------------------------

Bond K:

Bond Price= C x [1-{1/(1+r)n}]/r + M/(1+r)n

M= Face Value=$1,000 assumed

C= Coupon Amount= 1,000 x 11.8%=118

r=interest rate =11.1% or 0.111

n= 12 years

Bond Price = 118 x [1-{1(1 +0.087)12]/0.111 + 1,000/(1+0.111)12

                  =118 x [1-{1/(1.111)12}/0.111 + 1,000/(1.111)12

                  = 118x [1- 1/ 3.53645965/]0.111 + 1,000/ 3.53645965

                  = 118 x (1- 0.282768672]0.111+ 282.7686723

                      =118 x [0.717231328]/0.111+ 282.7686723

                       = x 6.461543493 + 282.7686723

                       = 762.4621321+ 282.7686723

                         =$         1,045.23

% Change in Bonds

Bond J:-        [ 934.57-786.77 ]/     934.57 x 100

                     = 147.80 /     934.57 x 100

                     =15.81%

Bond K:-        [1,225.38 - 1,045.23 ]/ 1,225.38   x 100

                     = 180.15 / 1,225.38 x 100

                     =14.70%

------------------------------------------------------------------------------------------------------------------------------------------

If YTM decreaes from 8.7 to 6.3 (i.e 2.4 % decrease)

Bond J:

Bond Price= C x [1-{1/(1+r)n}]/r + M/(1+r)n

M= Face Value=$1,000 assumed

C= Coupon Amount= 1,000 x 7.8%=$78

r=interest rate =6.3% or 0.063

n= 12 years

Bond Price = 78 x [1-{1(1 +0.063)12]/0.063 + 1,000/(1+0.063)12

                  =78 x [1-{1/(1.063)12}/0.063 + 1,000/(1.063)12

                  = 78 x [1- 1/ 2.081609083/]0.063 + 1,000/ 2.081609083

                  = 78 x (1- 0.480397596]0.063+ 480.3975963

                      =78 x [0.519602404]/0.063+480.3975963

                       =78 x 8.247657202 + 480.3975963

                       = 643.317+ 480.3975963

                         =$   1,123.71

If YTM decreaes from 8.7 to 6.3 (i.e 2.4 % decrease)

Bond K:

Bond Price= C x [1-{1/(1+r)n}]/r + M/(1+r)n

M= Face Value=$1,000 assumed

C= Coupon Amount= 1,000 x 11.8%=$118

r=interest rate =6.3% or 0.063

n= 12 years

Bond Price = 118 x [1-{1(1 +0.063)12]/0.063 + 1,000/(1+0.063)12

                   =118x [1-{1/(1.063)12}/0.063 + 1,000/(1.063)12

                  = 118 x [1- 1/ 2.081609083/]0.063 + 1,000/ 2.081609083

                  = 118 x (1- 0.480397596]0.063+ 480.3975963

                   =118 x [0.519602404]/0.063+480.3975963

                   =118 x 8.247657202 + 480.3975963

                   = 973.2235498+ 480.3975963

                  =$ 1,453.62

                       

% Change in Bonds

Bond J:-        [ 934.57- 1,123.71 ]/     934.57 x 100

                     = (189.15) /     934.57 x 100

                     =(20.24)%

Bond K:-        [1,225.38 - 1,453.62 ]/ 1,225.38   x 100

                     =           (228.24) / 1,225.38 x 100

                     = (18.63)%