Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

What can you say about the series using the Ratio Test? Answer \"Convergent\", \

ID: 2830415 • Letter: W

Question

What can you say about the series using the Ratio Test? Answer "Convergent", "Divergent", or "Inconclusive".
Answer:   choose one    Convergent    Divergent    Inconclusive   

Determine whether the series is absolutely convergent, conditionally convergent, or divergent. Answer "Absolutely Convergent", "Conditionally Convergent", or "Divergent".
Answer:   choose one    Absolutely Convergent    Conditionally Convergent    Divergent   

What can you say about the series using the Ratio Test? Answer "Convergent", "Divergent", or "Inconclusive".
Answer:   choose one    Convergent    Divergent    Inconclusive   

Determine whether the series is absolutely convergent, conditionally convergent, or divergent. Answer "Absolutely Convergent", "Conditionally Convergent", or "Divergent".
Answer:   choose one    Absolutely Convergent    Conditionally Convergent    Divergent   

Explanation / Answer

1. L=inf

Divergent

Divergent

2. L=inf

Divergent

Absolute convergence

Number 2 is a weird question, the limit goes to infinity which implies that the function does not converge, yet the function clearly has absolute convergence by A.S.T.