Question
Please show your work.
Find the derivative. ds/dt = 5t4 + csc t cot t ds/dt = t4 - cot2t + 18 ds/dt = 5t4 - csc t cot t ds/dt = 5t4 + cot2t Find the taylor series generated by fat x = a. f(x) = x3 - 5x2 + 10x - 10, a = 5 (x - 5)3 - 10(x - 5)2 + 15(x - 5)- 40 (x - 5)3 + 10(x - 5)2 + 15(x - 5) + 40 (x - 5)3 - 10(x - 5)2 + 35(x - 5)- 40 (x - 5)3 + 10(x - 5)2 + 15(x - 5) + 40 Find all local extreme values of the given function and identify each as a local maximum, local minimum, or saddle point. f(x, y) = 4 - x4y4 f(4,4) = -65,532, local minimum f(0, 0) = 4, local maximum; f(4, 0) = 4, saddle point; f(0, 0) = 4, local maximum Evaluate the integral. tan43tdt pi/9 - 2/9 -4/9 pi/6 - 4/9 pi/6 Find the sum of the series as a function of x. (x + 8)n -x+8/x+9 -x+8/x+7 x+8/x+9 x+8/x+7 Evaluate the improper integral. It the integral does not converge, state that the integral is divergent. 5/8x(x+1)2 dx -0.746 -5.965 0.625 0.120 Find the partial derivative. Let z = g(x,y) = 9x + 7x2y2 - 4y2. Find 14xy2 - 8y 9 + 14xy2 14x2y - 8y 9 + 14x2y Find the indicated relative minimum or maximum. Minimum of f(x,y) = x2 - 14x + y2 - 16y, subject to 2x + 3y = 12 f(1, 5) = -68 f(3,2) = -61 f(2, 0) = -24 f(0,1) = -15 Evaluate the iterated integral. (9x2y + 5xy) dy dx 85/2 85 425/2 425 Find the expected value of the probability density function to the nearest hundredth. f(x) = 1 - 1/ x;[1, 4] 2.83 2.67 3.00 2.50 Find the integral. (8x2 + x-3)dx 8x3/3 + x-2 + C -8x3/3 + x-2/2 + C -8x3/3 - x-2/2 + C 8x3/3 - x-2/2 + C te-7t2 dt 1/14e-7t2 + C 1/7e-7t2 + C -1/7e-7t2 + C -1/14e-7t2 + C Find the area between the curves. y = x2, y = 4 32/3 31/3 34/3 37/3 Use integration by parts to find the integral. Round the answer to two decimal places if necessary. x/ x - 1 -133 -2.27 0.39 -0.94 Use the table of integrals or a computer or calculator with symbolic integration capabilities to find the integral. 1/ x2 + 49dx 1/14 ln(x - 7/x + 7)+C 1/14ln(7+x/7-x)+C ln (x + x2 - 49) + C ln(x + x2 + 49) + C Find the volume of the solid of revolution formed by rotating about the x-axis the region bounded by the curves. f(x) = 3x + 2,y = 0,x = l,x = 5 44pi 44 80 80pi
Explanation / Answer
15 -> a
16 -> d
12 -> c
13-> c
14 -> b
7-> d
8 -> c
9 -> b
10 -> d
11 - > a
1 -> d
2 - > d
3 - > a
4 - > c
5 - > c
6 -> a