Consider the function [f(x) = { 2 x + 7 }/ { 6 x + 3 }] . For this function ther
ID: 2867220 • Letter: C
Question
Consider the function [f(x) = { 2 x + 7 }/ { 6 x + 3 }] . For this function there are two important intervals: [(-infty, A)] and [(A,infty)] where the function is not defined at [A] .
Find [A]
For each of the following intervals, tell whether [f(x)] is increasing (type in INC) or decreasing (type in DEC).
[(-infty, A)] :
[(A,infty)]
Note that this function has no inflection points, but we can still consider its concavity. For each of the following intervals, tell whether [f(x)] is concave up (type in CU) or concave down (type in CD).
[(-infty, A)] :
[(A,infty)]
Explanation / Answer
f(x) = (2x + 7) / (6x + 3)
Equate denominator to 0
6x + 3 = 0
6x = -3
x = -3/6
x = -1/2
So, A = -1/2 ----> ANSWER
---------------------------------------------------------------------
Increase/Decrease :
f(x) = (2x + 7) / (6x + 3)
Deriving :
u = 2x + 7 , v = 6x + 3
u' = 2 , v' =6
(u'v - uv') / v^2, by quotient rule
(12x + 6 - 12x - 42) / (6x + 3)^2
f'(x) = -36 / (6x + 3)^2
But we have a VA at x = -1/2
So, this splits the region into (-inf , -1/2) and (-1/2 , inf).....
Region 1 : (-inf , -1/2)
Testvalue = -1
f'(x) = -36 / (6x + 3)^2
f'(-1) = negative
So, DECREASING over (-inf , -1/2)
Region 2 : (-1/2 , inf)
Testvalue = 0
f'(x) = -36 / (6x + 3)^2
f'(0) = -36 / (0 + 3)^2 --> -4 --> negative
So, DECREASING over (-1/2 , inf)
So, decreasing over : (-inf , -1/2) U (-1/2 , inf)
Increasing : nowhere
(-inf , A) : decreasing ---> ANSWER
(A , inf) : decreasing ---> ANSWER
-----------------------------------------------------------------------------------
Concavity :
f'(x) = -36 / (6x + 3)^2
f''(x) = -36 * -2 / (6x + 3)^3 * 6
f''(x) = 432 / (6x + 3)^3
But undefined at x = -1/2
Region 1 : (-inf , -1/2)
Testvalue = -1
f''(x) = 432 / (6x + 3)^3
f''(-1) = 432 / (-3)^3 --> negative
So, concave down
Region 2 : (-1/2 , inf)
Testvalue = 0
f''(0) = 432 / (0 + 3)^3 --> positive
So, concave up
So, answers :
(-inf , A) : concave down ---> ANSWER
(A , inf) : concave up ---> ANSWER