Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Break a ciphertext file that was output from a DES encryption algorithm. Your ta

ID: 2876433 • Letter: B

Question

Break a ciphertext file that was output from a DES encryption algorithm. Your target is to write some code to brute force attack the cipher and identify the key and retrieve the original plaintext

That is what I have done so far and i am stuck with my program. Can somebody help me finish it? Please!!!

#include

#include "DES.h"

typedef int bool;

#define true 1

#define false 0

//the ciphertext file contains ONLY 32 characters

void loadFile(unsigned char data[], int length)

{

FILE* file = fopen( "CipherFile.txt" , "r");

if(file)

{

int i;

for (i=0; i < length; i++)

   data[i] = fgetc(file);

fclose(file);

}

else

   printf("Cannot open the file ");

}

void printText(unsigned char hash[], int length)

{

   int i;

   for (i=0; i < length; i++)

printf("%c",hash[i]);

   printf(" ");

}

int main()

{

       uchar key[8],

       plainTextBlock[8],

       cipherTextBlock[8],

       schedule[16][6];

       uint state[2];

          

  

   getchar();

   return 0;

}

I am provided with DES.h, which is as follows:

#define uchar unsigned char

#define uint unsigned int

#define ENCRYPT 1

#define DECRYPT 0

// Obtain bit "b" from the left and shift it "c" places from the right

#define BITNUM(a,b,c) (((a[(b)/8] >> (7 - (b%8))) & 0x01) << (c))

#define BITNUMINTR(a,b,c) ((((a) >> (31 - (b))) & 0x00000001) << (c))

#define BITNUMINTL(a,b,c) ((((a) << (b)) & 0x80000000) >> (c))

// This macro converts a 6 bit block with the S-Box row defined as the first and last

// bits to a 6 bit block with the row defined by the first two bits.

#define SBOXBIT(a) (((a) & 0x20) | (((a) & 0x1f) >> 1) | (((a) & 0x01) << 4))

uchar sbox1[64] = {

   14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,

0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,

4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,

   15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13

};

uchar sbox2[64] = {

   15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,

3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,

0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,

   13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9

};

uchar sbox3[64] = {

   10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,

   13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,

   13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,

1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12

};

uchar sbox4[64] = {

7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,

   13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,

   10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,

3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14

};

uchar sbox5[64] = {

2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,

   14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,

4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,

   11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3

};

uchar sbox6[64] = {

   12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,

   10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,

9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,

4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13

};

uchar sbox7[64] = {

4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,

   13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,

1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,

6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12

};

uchar sbox8[64] = {

   13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,

1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,

7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,

2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11

};

void key_schedule(uchar key[], uchar schedule[][6], uint mode)

{

   uint i,j,to_gen,C,D,

key_rnd_shift[16]={1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1},

key_perm_c[28]={56,48,40,32,24,16,8,0,57,49,41,33,25,17,

9,1,58,50,42,34,26,18,10,2,59,51,43,35},

key_perm_d[28]={62,54,46,38,30,22,14,6,61,53,45,37,29,21,

13,5,60,52,44,36,28,20,12,4,27,19,11,3},

key_compression[48]={13,16,10,23,0,4,2,27,14,5,20,9,

   22,18,11,3,25,7,15,6,26,19,12,1,

   40,51,30,36,46,54,29,39,50,44,32,47,

   43,48,38,55,33,52,45,41,49,35,28,31};

   // Permutated Choice #1 (copy the key in, ignoring parity bits).

   for (i = 0, j = 31, C = 0; i < 28; ++i, --j)

C |= BITNUM(key,key_perm_c[i],j);

   for (i = 0, j = 31, D = 0; i < 28; ++i, --j)

D |= BITNUM(key,key_perm_d[i],j);

   // Generate the 16 subkeys.

   for (i = 0; i < 16; ++i) {

C = ((C << key_rnd_shift[i]) | (C >> (28-key_rnd_shift[i]))) & 0xfffffff0;

D = ((D << key_rnd_shift[i]) | (D >> (28-key_rnd_shift[i]))) & 0xfffffff0;

// Decryption subkeys are reverse order of encryption subkeys so

// generate them in reverse if the key schedule is for decryption useage.

if (mode == DECRYPT)

   to_gen = 15 - i;

else

   to_gen = i;

// Initialize the array

for (j = 0; j < 6; ++j)

   schedule[to_gen][j] = 0;

for (j = 0; j < 24; ++j)

   schedule[to_gen][j/8] |= BITNUMINTR(C,key_compression[j],7 - (j%8));

for ( ; j < 48; ++j)

   schedule[to_gen][j/8] |= BITNUMINTR(D,key_compression[j] - 28,7 - (j%8));

   }

}

// Initial (Inv)Permutation step

void IP(uint state[], uchar in[])

{

   state[0] = BITNUM(in,57,31) | BITNUM(in,49,30) | BITNUM(in,41,29) | BITNUM(in,33,28) |

BITNUM(in,25,27) | BITNUM(in,17,26) | BITNUM(in,9,25) | BITNUM(in,1,24) |

BITNUM(in,59,23) | BITNUM(in,51,22) | BITNUM(in,43,21) | BITNUM(in,35,20) |

BITNUM(in,27,19) | BITNUM(in,19,18) | BITNUM(in,11,17) | BITNUM(in,3,16) |

BITNUM(in,61,15) | BITNUM(in,53,14) | BITNUM(in,45,13) | BITNUM(in,37,12) |

BITNUM(in,29,11) | BITNUM(in,21,10) | BITNUM(in,13,9) | BITNUM(in,5,8) |

BITNUM(in,63,7) | BITNUM(in,55,6) | BITNUM(in,47,5) | BITNUM(in,39,4) |

BITNUM(in,31,3) | BITNUM(in,23,2) | BITNUM(in,15,1) | BITNUM(in,7,0);

   state[1] = BITNUM(in,56,31) | BITNUM(in,48,30) | BITNUM(in,40,29) | BITNUM(in,32,28) |

BITNUM(in,24,27) | BITNUM(in,16,26) | BITNUM(in,8,25) | BITNUM(in,0,24) |

BITNUM(in,58,23) | BITNUM(in,50,22) | BITNUM(in,42,21) | BITNUM(in,34,20) |

BITNUM(in,26,19) | BITNUM(in,18,18) | BITNUM(in,10,17) | BITNUM(in,2,16) |

BITNUM(in,60,15) | BITNUM(in,52,14) | BITNUM(in,44,13) | BITNUM(in,36,12) |

BITNUM(in,28,11) | BITNUM(in,20,10) | BITNUM(in,12,9) | BITNUM(in,4,8) |

BITNUM(in,62,7) | BITNUM(in,54,6) | BITNUM(in,46,5) | BITNUM(in,38,4) |

BITNUM(in,30,3) | BITNUM(in,22,2) | BITNUM(in,14,1) | BITNUM(in,6,0);

}

void InvIP(uint state[], uchar in[])

{

   in[0] = BITNUMINTR(state[1],7,7) | BITNUMINTR(state[0],7,6) | BITNUMINTR(state[1],15,5) |

   BITNUMINTR(state[0],15,4) | BITNUMINTR(state[1],23,3) | BITNUMINTR(state[0],23,2) |

   BITNUMINTR(state[1],31,1) | BITNUMINTR(state[0],31,0);

   in[1] = BITNUMINTR(state[1],6,7) | BITNUMINTR(state[0],6,6) | BITNUMINTR(state[1],14,5) |

   BITNUMINTR(state[0],14,4) | BITNUMINTR(state[1],22,3) | BITNUMINTR(state[0],22,2) |

   BITNUMINTR(state[1],30,1) | BITNUMINTR(state[0],30,0);

   in[2] = BITNUMINTR(state[1],5,7) | BITNUMINTR(state[0],5,6) | BITNUMINTR(state[1],13,5) |

   BITNUMINTR(state[0],13,4) | BITNUMINTR(state[1],21,3) | BITNUMINTR(state[0],21,2) |

   BITNUMINTR(state[1],29,1) | BITNUMINTR(state[0],29,0);

   in[3] = BITNUMINTR(state[1],4,7) | BITNUMINTR(state[0],4,6) | BITNUMINTR(state[1],12,5) |

   BITNUMINTR(state[0],12,4) | BITNUMINTR(state[1],20,3) | BITNUMINTR(state[0],20,2) |

   BITNUMINTR(state[1],28,1) | BITNUMINTR(state[0],28,0);

   in[4] = BITNUMINTR(state[1],3,7) | BITNUMINTR(state[0],3,6) | BITNUMINTR(state[1],11,5) |

   BITNUMINTR(state[0],11,4) | BITNUMINTR(state[1],19,3) | BITNUMINTR(state[0],19,2) |

   BITNUMINTR(state[1],27,1) | BITNUMINTR(state[0],27,0);

   in[5] = BITNUMINTR(state[1],2,7) | BITNUMINTR(state[0],2,6) | BITNUMINTR(state[1],10,5) |

   BITNUMINTR(state[0],10,4) | BITNUMINTR(state[1],18,3) | BITNUMINTR(state[0],18,2) |

   BITNUMINTR(state[1],26,1) | BITNUMINTR(state[0],26,0);

   in[6] = BITNUMINTR(state[1],1,7) | BITNUMINTR(state[0],1,6) | BITNUMINTR(state[1],9,5) |

   BITNUMINTR(state[0],9,4) | BITNUMINTR(state[1],17,3) | BITNUMINTR(state[0],17,2) |

   BITNUMINTR(state[1],25,1) | BITNUMINTR(state[0],25,0);

   in[7] = BITNUMINTR(state[1],0,7) | BITNUMINTR(state[0],0,6) | BITNUMINTR(state[1],8,5) |

   BITNUMINTR(state[0],8,4) | BITNUMINTR(state[1],16,3) | BITNUMINTR(state[0],16,2) |

   BITNUMINTR(state[1],24,1) | BITNUMINTR(state[0],24,0);

}

uint f(uint state, uchar key[])

{

   uchar lrgstate[6],i;

   uint t1,t2;

   // Expantion Permutation

   t1 = BITNUMINTL(state,31,0) | ((state & 0xf0000000) >> 1) | BITNUMINTL(state,4,5) |

BITNUMINTL(state,3,6) | ((state & 0x0f000000) >> 3) | BITNUMINTL(state,8,11) |

BITNUMINTL(state,7,12) | ((state & 0x00f00000) >> 5) | BITNUMINTL(state,12,17) |

BITNUMINTL(state,11,18) | ((state & 0x000f0000) >> 7) | BITNUMINTL(state,16,23);

   t2 = BITNUMINTL(state,15,0) | ((state & 0x0000f000) << 15) | BITNUMINTL(state,20,5) |

BITNUMINTL(state,19,6) | ((state & 0x00000f00) << 13) | BITNUMINTL(state,24,11) |

BITNUMINTL(state,23,12) | ((state & 0x000000f0) << 11) | BITNUMINTL(state,28,17) |

BITNUMINTL(state,27,18) | ((state & 0x0000000f) << 9) | BITNUMINTL(state,0,23);

   lrgstate[0] = (t1 >> 24) & 0x000000ff;

   lrgstate[1] = (t1 >> 16) & 0x000000ff;

   lrgstate[2] = (t1 >> 8) & 0x000000ff;

   lrgstate[3] = (t2 >> 24) & 0x000000ff;

   lrgstate[4] = (t2 >> 16) & 0x000000ff;

   lrgstate[5] = (t2 >> 8) & 0x000000ff;

   // Key XOR

   lrgstate[0] ^= key[0];

   lrgstate[1] ^= key[1];

   lrgstate[2] ^= key[2];

   lrgstate[3] ^= key[3];

   lrgstate[4] ^= key[4];

   lrgstate[5] ^= key[5];

   // S-Box Permutation

   state = (sbox1[SBOXBIT(lrgstate[0] >> 2)] << 28) |

   (sbox2[SBOXBIT(((lrgstate[0] & 0x03) << 4) | (lrgstate[1] >> 4))] << 24) |

   (sbox3[SBOXBIT(((lrgstate[1] & 0x0f) << 2) | (lrgstate[2] >> 6))] << 20) |

   (sbox4[SBOXBIT(lrgstate[2] & 0x3f)] << 16) |

   (sbox5[SBOXBIT(lrgstate[3] >> 2)] << 12) |

   (sbox6[SBOXBIT(((lrgstate[3] & 0x03) << 4) | (lrgstate[4] >> 4))] << 8) |

   (sbox7[SBOXBIT(((lrgstate[4] & 0x0f) << 2) | (lrgstate[5] >> 6))] << 4) |

sbox8[SBOXBIT(lrgstate[5] & 0x3f)];

   // P-Box Permutation

   state = BITNUMINTL(state,15,0) | BITNUMINTL(state,6,1) | BITNUMINTL(state,19,2) |

   BITNUMINTL(state,20,3) | BITNUMINTL(state,28,4) | BITNUMINTL(state,11,5) |

   BITNUMINTL(state,27,6) | BITNUMINTL(state,16,7) | BITNUMINTL(state,0,8) |

   BITNUMINTL(state,14,9) | BITNUMINTL(state,22,10) | BITNUMINTL(state,25,11) |

   BITNUMINTL(state,4,12) | BITNUMINTL(state,17,13) | BITNUMINTL(state,30,14) |

   BITNUMINTL(state,9,15) | BITNUMINTL(state,1,16) | BITNUMINTL(state,7,17) |

   BITNUMINTL(state,23,18) | BITNUMINTL(state,13,19) | BITNUMINTL(state,31,20) |

   BITNUMINTL(state,26,21) | BITNUMINTL(state,2,22) | BITNUMINTL(state,8,23) |

   BITNUMINTL(state,18,24) | BITNUMINTL(state,12,25) | BITNUMINTL(state,29,26) |

   BITNUMINTL(state,5,27) | BITNUMINTL(state,21,28) | BITNUMINTL(state,10,29) |

   BITNUMINTL(state,3,30) | BITNUMINTL(state,24,31);

   // Return the final state value

   return(state);

}

void des_crypt(uchar in[], uchar out[], uchar key[][6])

{

   uint state[2],idx,t;

   IP(state,in);

   // Loop 16 times, perform the final loop manually as it doesn't switch sides

   for (idx=0; idx < 15; ++idx) {

t = state[1];

state[1] = f(state[1],key[idx]) ^ state[0];

state[0] = t;

   }

   state[0] = f(state[1],key[15]) ^ state[0];

   // Inverse IP

   InvIP(state,out);

}

/**************************************

   3DES functions

**************************************/

void three_des_key_schedule(uchar key[], uchar schedule[][16][6], uint mode)

{

   if (mode == ENCRYPT) {

key_schedule(&key[0],schedule[0],mode);

key_schedule(&key[8],schedule[1],!mode);

key_schedule(&key[16],schedule[2],mode);

   }

   else {

key_schedule(&key[16],schedule[0],mode);

key_schedule(&key[8],schedule[1],!mode);

key_schedule(&key[0],schedule[2],mode);

   }

}

void three_des_crypt(uchar in[], uchar out[], uchar key[][16][6])

{

   des_crypt(in,out,key[0]);

   des_crypt(out,out,key[1]);

   des_crypt(out,out,key[2]);

}

/************************************/

The CipherFile.txt is given and the ciphertext is:

> >—GME¥}`ëË)PexEHá]x¡Küt

PLEASE HELP!!! I would really appreciate it.

Explanation / Answer

breaking is sometimes used interchangeably with weakening.this refers to finding a property in the design or implementation of the cipher that reduces the number ofkeys required in a brute force attack .for example assume that a symmetric cipherimplementation uses a key length 2^128 bits this means that a brute force attack would need to try up to all 2^128 possible combination to be certai to finding the correct key to convert the ciphertext into plaintext which is not possible given present and near future computing abilities.