Quarterly revenue ($ millions) for Twitter for the first quarter of 2012 through
ID: 2908532 • Letter: Q
Question
Quarterly revenue ($ millions) for Twitter for the first quarter of 2012 through the first quarter of 2014 are shown below (adexchange.com, April, 2015):
b.) Using Minitab or Excel, develop a linear trend equation for this time series (to 3 decimals if necessary).
y = x +
c. Using Minitab or Excel, develop a quadratic trend equation for this time series (to 4 decimals if necessary).
y = x 2 + x +
d. Compare the MSE for each model (to 3 decimals).
Which model appears better according to MSE?
SelectLinear modelQuadratic modelItem 10
e. Use the models developed in parts (b) and (c) to forecast revenue for the tenth quarter (to 3 decimals).
Linear model Quadratic modelExplanation / Answer
We Use Minitab to solve this question-
Welcome to Minitab, press F1 for help.
MTB > Trend 'Revenue';
SUBC> Brief 2;
SUBC> NoPlot.
Trend Analysis for Revenue
Data Revenue
Length 9
NMissing 0
Fitted Trend Equation
Yt = 10.9 + 25.17×t
+Accuracy Measures
MAPE 12.628
MAD 15.173
MSD 317.765
Time Revenue Trend Detrend
1 54 36.111 17.8889
2 68 61.278 6.7222
3 82 86.444 -4.4444
4 112 111.611 0.3889
5 114 136.778 -22.7778
6 139 161.944 -22.9444
7 169 187.111 -18.1111
8 243 212.278 30.7222
9 250 237.444 12.5556
MTB > Trend 'Revenue';
SUBC> Quadratic;
SUBC> Brief 2;
SUBC> NoPlot.
Trend Analysis for Revenue
Data Revenue
Length 9
NMissing 0
Fitted Trend Equation
Yt = 53.3 + 2.07×t + 2.310×t^2
Accuracy Measures
MAPE 6.393
MAD 9.302
MSD 135.228
Time Revenue Trend Detrend
1 54 57.667 -3.6667
2 68 66.667 1.3333
3 82 80.286 1.7143
4 112 98.524 13.4762
5 114 121.381 -7.3810
6 139 148.857 -9.8571
7 169 180.952 -11.9524
8 243 217.667 25.3333
9 250 259.000 -9.0000
____________________________________________________________________________________
b)
A linear trend equation for this time series is,
Yt = 10.9 + 25.17×t
c)
A quadratic trend equation for this time series is,
Yt = 53.3 + 2.07×t + 2.310×t^2
d)
MSE for each model is,
Linear Model = 317.765
Quadratic Model =135.228
d)
Linear Model,
Yt = 10.9 + 25.17*10 = 262.600
Quadratic Model,
Yt = 53.3 + 2.07*10+ 2.310*10^2 = 305.000