ASSIGNMENT #4 1. Use EXCEL file: RESIDENT to develop the multiple regression mod
ID: 2924862 • Letter: A
Question
Explanation / Answer
a)Excel output after applying ‘REGRESSION’ from the Data Analysis Toolpack on the data :
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.983078977
R Square
0.966444275
Adjusted R Square
0.888147583
Standard Error
6.651021374
Observations
11
ANOVA
df
SS
MS
F
Significance F
Regression
7
3822.153562
546.0219
12.34336
0.031741806
Residual
3
132.7082559
44.23609
Total
10
3954.861818
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 90.0%
Upper 90.0%
Intercept
-54.29238494
25.38938455
-2.13839
0.122039
-135.092738
26.50797
-114.043
5.458064
Square feet
-2.515122948
1.490003365
-1.688
0.189995
-7.256978653
2.226733
-6.02164
0.991396
Bedrms
-16.53016064
8.033206349
-2.05773
0.131783
-42.09540851
9.035087
-35.4352
2.374893
Bathrms
34.00238415
23.12696363
1.470249
0.237848
-39.59793582
107.6027
-20.4238
88.42853
Total rooms
26.125135
5.384650857
4.851779
0.016712
8.988772776
43.2615
13.45309
38.79718
Age
-2.441682982
1.168651907
-2.08932
0.12786
-6.160854925
1.277489
-5.19195
0.30858
Attached garage
40.0234526
14.67822828
2.726722
0.07214
-6.689220762
86.73613
5.480247
74.56666
View
-5.841604525
8.587234703
-0.68027
0.545131
-33.17001788
21.48681
-26.0505
14.36728
Regression model :
Sales price = -54.29-2.51*Square feet-16.53*Bedrms+34*Bathrms+26.12*Total rooms-2.44*Age+40*Attached garage-5.84*View
b)Yes the model is useful in prediction as explained by the F-statistic which is greater than the significant F, implying that the regression model is useful.
Moreover, adjusted R-square is approximately 0.888 which implies that the 88.8% variability is explained by the regression model obtained which is quite a good amount explained.
c)The least significant variable is VIEW since its p-value is > 0.1 implying that the effect of this variable is not significant enough.
The most significant variable is TOTAL ROOMS whose p-value is the least.
d)
64.360486
22.4
4
2
7
18
1
1
93.866367
15.3
3
2
7
6
0
0
83.461908
17.2
4
1
7
4
1
0
61.86039
31.7
5
3
9
24
0
0
113.6137
20
4
2
8
11
1
1
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.983078977
R Square
0.966444275
Adjusted R Square
0.888147583
Standard Error
6.651021374
Observations
11
ANOVA
df
SS
MS
F
Significance F
Regression
7
3822.153562
546.0219
12.34336
0.031741806
Residual
3
132.7082559
44.23609
Total
10
3954.861818
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 90.0%
Upper 90.0%
Intercept
-54.29238494
25.38938455
-2.13839
0.122039
-135.092738
26.50797
-114.043
5.458064
Square feet
-2.515122948
1.490003365
-1.688
0.189995
-7.256978653
2.226733
-6.02164
0.991396
Bedrms
-16.53016064
8.033206349
-2.05773
0.131783
-42.09540851
9.035087
-35.4352
2.374893
Bathrms
34.00238415
23.12696363
1.470249
0.237848
-39.59793582
107.6027
-20.4238
88.42853
Total rooms
26.125135
5.384650857
4.851779
0.016712
8.988772776
43.2615
13.45309
38.79718
Age
-2.441682982
1.168651907
-2.08932
0.12786
-6.160854925
1.277489
-5.19195
0.30858
Attached garage
40.0234526
14.67822828
2.726722
0.07214
-6.689220762
86.73613
5.480247
74.56666
View
-5.841604525
8.587234703
-0.68027
0.545131
-33.17001788
21.48681
-26.0505
14.36728