Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Show a). 1>0 b). if 0<a<b, then 0<1/b<1/a c).If 0<a<b, then a^n < b^n for any po

ID: 2968302 • Letter: S

Question

                    Show
                

                    a). 1>0                 

                    b). if 0<a<b, then 0<1/b<1/a                 

                    c).If 0<a<b, then a^n < b^n for any positive integer n                 

                    d).If a and b are positive numbers, and a^n < b^n for some positive integer n, show a<b                 

                    e).Show for any real numbers a and b that lal <=lbl iff a^2 <= b^2                 

                    f). Let x and y be positive real numbers with x<y and let s be a positive rational number, then x^s < y^s

Show 1>0 if 0

Explanation / Answer

a) If x>0 , x^2>0 . IF x<0, then -x>0 hence (-x)^2>0. But x^2= (-x)^2 by (d) Since 1=1^2, 1>0


b) 0<a<b

Divide both sides by ab to get 0/ab < a/ab < b/ab or 0<1/b<1/a


c) 0<a<b

So a<b

Taking nth power of both sides

a^n<b^n (As n is positive )


d) a^n < b^n


Taking 1/n th power of both sides, a^n*1/n < b^n*1/n

=> a < b


e) sqrt (a^2) = lal and sqrt (b^2) = ( lbl)

Now a^2 <= b^2 So taking sqrt of both sides we get lal <= lbl


f) x<y

Taking sth power of both sides x^s<y^s [As s is positive rational]