Please do qeustion #2. Please follow the guidelines given in the question. That
ID: 2969922 • Letter: P
Question
Please do qeustion #2.
Please follow the guidelines given in the question.
That is, all steps for reduction of order.
I also need part (c) .
Will not take as an answer if your answer fails to meet the above.
Thanks,
Explanation / Answer
a) k^2 - 4 = 0
k = 2 or -2
y = c1*e^(2x) + c2*e^(-2x)
b) We assume y_p = Axe^(2x)
y" - 4y = 2e^(2x) = A(4e^(2x))
A = 1/2
y = c1e^(2x) + c2e^(-2x) + (x/2)*e^(2x)
c) y' = 2c1e^(2x)-2c2e^(-2x) + xe^(2x) + 0.5*e^(2x)
y" = 4c1e^(2x) -4c2e^(-2x) + 2xe^(2x) + e^(2x) + e^(2x)
y" - y' = 4c1e^(2x) -4c2e^(-2x) + 2xe^(2x) + e^(2x) + e^(2x) - 4(c1e^(2x) + c2e^(-2x) + (x/2)*e^(2x))
= 4c1e^(2x) -4c2e^(-2x) + 2xe^(2x) + e^(2x) + e^(2x) - 4c1e^(2x) + 4c2e^(-2x) + (2x)*e^(2x)
= 2*e^(2x)