Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The movie “2012” is based on several doomsday prophecies as disparate as the May

ID: 3022795 • Letter: T

Question

The movie “2012” is based on several doomsday prophecies as disparate as the Mayan calendar, numerological constructions, and messages from extraterrestrial beings. As a rational thinking statistician, you decide to find out what proportion of the U.S. population actually believes in these prophecies. You take a randomly collected sample of 350 people and discover that 45 of them believe at least “somewhat” in the predictions. Construct a 95% confidence interval for the proportion of U.S. population who believe at least “somewhat” in doomsday prophecies. (Show your work or formula.). Interpret the interval

Explanation / Answer

Note that              
              
p^ = point estimate of the population proportion = x / n = 45/350 =    0.128571429          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.017891803          
              
Now, for the critical z,              
alpha/2 =   0.025          
Thus, z(alpha/2) =    1.959963985          
Thus,              
Margin of error = z(alpha/2)*sp =    0.03506729          
lower bound = p^ - z(alpha/2) * sp =   0.093504139          
upper bound = p^ + z(alpha/2) * sp =    0.163638718          
              
Thus, the confidence interval is              
              
(   0.093504139   ,   0.163638718   ) [ANSWER]