Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Minutes 23 29 49 64 74 87 96 97 109 119 149 145 154 166 Units 1 2 34456 678 9 91

ID: 3053337 • Letter: M

Question

Minutes 23 29 49 64 74 87 96 97 109 119 149 145 154 166 Units 1 2 34456 678 9 910 10 When estimating a linear regression model for the data, keep in man the objective is to predict Y given values of X. Also note that the relationship between a response variable Y and a predictor variable X can be written as follows. EXCEL (and other statistical software) can be used to estimate the following from of this equation. Without mathematical proof the parameters needed to estimate the "predicted value" of the response variable - Y- in equation (2) are as follows. r (3) In both equations (3) and (4), Y -y1V2. n and X-x1,X2,xn When discussing the regression coefficients, note the formulas, annotate them, and show the answers. Show how you solved (3) and (4) by producing a table containing the figures needed

Explanation / Answer

Minutes(x)

Units(y)

y-mean(y)

x-mean(x)

(y-mean(y))(x-mean(x))

(x-mean(x))^2

23

1

-5

-74.2143

371.0714286

5507.76

29

2

-4

-68.2143

272.8571429

4653.189

49

3

-3

-48.2143

144.6428571

2324.617

64

4

-2

-33.2143

66.42857143

1103.189

74

4

-2

-23.2143

46.42857143

538.9031

87

5

-1

-10.2143

10.21428571

104.3316

96

6

0

-1.21429

0

1.47449

97

6

0

-0.21429

0

0.045918

109

7

1

11.78571

11.78571429

138.9031

119

8

2

21.78571

43.57142857

474.6173

149

9

3

51.78571

155.3571429

2681.76

145

9

3

47.78571

143.3571429

2283.474

154

10

4

56.78571

227.1428571

3224.617

166

10

4

68.78571

275.1428571

4731.474

Total

1361

84

0

0

1768

27768.36

Mean

97.2142857

6

0

0

126.2857143

1983.454

Beta1 = 1768/27768.36 = 0.06367
Beta0 = 6 – 0.06367*97.2142857 = -0.18959

If we carry out Regression (from DATA ANALYSIS TOOLPACK) on the given data, we get the following output :

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.993699

R Square

0.987437

Adjusted R Square

0.98639

Standard Error

0.345466

Observations

14

ANOVA

df

SS

MS

F

Significance F

Regression

1

112.5678

112.5678

943.2009

8.92E-13

Residual

12

1.432159

0.119347

Total

13

114

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

-0.18959

0.221682

-0.85525

0.409163

-0.6726

0.29341

-0.6726

0.29341

Minutes(x)

0.06367

0.002073

30.71158

8.92E-13

0.059153

0.068187

0.059153

0.068187

The coefficients here match with the calculated coefficients.

Minutes(x)

Units(y)

y-mean(y)

x-mean(x)

(y-mean(y))(x-mean(x))

(x-mean(x))^2

23

1

-5

-74.2143

371.0714286

5507.76

29

2

-4

-68.2143

272.8571429

4653.189

49

3

-3

-48.2143

144.6428571

2324.617

64

4

-2

-33.2143

66.42857143

1103.189

74

4

-2

-23.2143

46.42857143

538.9031

87

5

-1

-10.2143

10.21428571

104.3316

96

6

0

-1.21429

0

1.47449

97

6

0

-0.21429

0

0.045918

109

7

1

11.78571

11.78571429

138.9031

119

8

2

21.78571

43.57142857

474.6173

149

9

3

51.78571

155.3571429

2681.76

145

9

3

47.78571

143.3571429

2283.474

154

10

4

56.78571

227.1428571

3224.617

166

10

4

68.78571

275.1428571

4731.474

Total

1361

84

0

0

1768

27768.36

Mean

97.2142857

6

0

0

126.2857143

1983.454