Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Problem 4: Consider the data shown below: Please use R, and show the codes, outp

ID: 3066684 • Letter: P

Question

Problem 4: Consider the data shown below:

Please use R, and show the codes, outputs, formulas, and brief explanation.

x

y

x

y

4

24.6

6.5

67.11

4

24.71

6.5

67.24

4

23.9

6.75

67.15

5

39.5

7

77.87

5

39.6

7.1

80.11

6

57.12

7.3

84.67

a.- Fit a second-order polynomial model to these data.

b.- Test for significance of regression.

c.- Test for lack of fit and comment on the adequacy of the second-order model.

d.- Test the hypothesis H0: B2=0. Can the quadratic term be deleted from this equation?

x

y

x

y

4

24.6

6.5

67.11

4

24.71

6.5

67.24

4

23.9

6.75

67.15

5

39.5

7

77.87

5

39.6

7.1

80.11

6

57.12

7.3

84.67

Explanation / Answer

x=c(4,4,4,5,5,6,6.5,6.5,6.75,7,7.1,7.3)

> y=c(24.6,24.71,23.9,39.5,39.6,57.12,67.11,67.24,67.15,77.87,80.11,84.61)

> ##a)

> z=lm(y~x+I(x^2))

> z

Call:

lm(formula = y ~ x + I(x^2))

Coefficients:

(Intercept)            x       I(x^2)

     -4.666        1.466        1.459

> ##b)

## testing:

H0: beta is equal to zero.

Vs

H1: beta is not equal to zero.

> fit=lm(y~x)

> fit

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept)            x

     -47.40        17.68

> summary(fit)

Call:

lm(formula = y ~ x)

Residuals:

    Min      1Q Median      3Q     Max

-4.7648 -1.4072 0.1688 1.4367 2.9735

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept) -47.3966     3.0389 -15.60 2.40e-08 ***

x            17.6758     0.5157   34.28 1.06e-11 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.205 on 10 degrees of freedom

Multiple R-squared: 0.9916,    Adjusted R-squared: 0.9907

F-statistic: 1175 on 1 and 10 DF, p-value: 1.057e-11

> ##INTERPRETATION: Here p_value is 1.057e-11 which is much less than 0.05.therefore we reject the null hypothesis that beta=0.Hence there is significant relation between the variables in the linear regression model.

> ##c)

## testing:

H0: there is no lack of fit in the given data.

Vs

H1: there is lack of fit in the given data.

> anova(lm(y~x+I(x^2)),lm(y~factor(x)*factor(I(x^2))))

Analysis of Variance Table

Model 1: y ~ x + I(x^2)

Model 2: y ~ factor(x) * factor(I(x^2))

Res.Df     RSS Df Sum of Sq    F   Pr(>F)  

1      9 24.6204                             

2      4 0.3995 5    24.221 48.5 0.001133 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

>

> ##INTERPRETATION: Here p_value is 0.001133 which is less than 0.05.therefore we reject the null hypothesis that there is no lack of fit. Hence the second order polynomial model is inadequate.