Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Clark Heter is an industrial engineer at Lyons Products. He would like to determ

ID: 3126005 • Letter: C

Question

Clark Heter is an industrial engineer at Lyons Products. He would like to determine whether there are more units produced on the night shift than on the day shift. A sample of 57 day-shift workers showed that the mean number of units produced was 348, with a population standard deviation of 23. A sample of 67 night-shift workers showed that the mean number of units produced was 353, with a population standard deviation of 33 units.

The decision rule is to reject H0: d n if z < . (Negative amount should be indicated by a minus sign. Round your answer to 2 decimal places.)

The test statistic is z = . (Negative amount should be indicated by a minus sign. Round your answer to 2 decimal places.)

At the .02 significance level, is the number of units produced on the night shift larger?

Explanation / Answer

1.


Formulating the null and alternative hypotheses,              
              
Ho:   u1 - u2   >=   0  
Ha:   u1 - u2   <   0  
At level of significance =    0.02          

As we can see, this is a    left   tailed test.  
Hence, it is a ONE TAILED TEST. [ANSWER]

************************

2.


Now, the critical value for z is, by table/technology,              
              
zcrit = -2.05

Hence, we reject Ho is z < -2.05. [ANSWER]

************************

3.

  
Calculating the means of each group,              
              
X1 =    348          
X2 =    353          
              
Calculating the standard deviations of each group,              
              
s1 =    23          
s2 =    33          
              
Thus, the standard error of their difference is, by using sD = sqrt(s1^2/n1 + s2^2/n2):              
              
n1 = sample size of group 1 =    57          
n2 = sample size of group 2 =    67          

Also, sD =    5.053160704          
              
Thus, the z statistic will be              
              
z = [X1 - X2 - uD]/sD =    -0.989479712   [ANSWER, TEST STATISTIC]

where uD = hypothesized difference =    0      

*****************************************      
              
4.
      
As z > -2.05,   WE DO NOT REJECT THE NULL HYPOTHESIS. [ANSWER]