Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Please show work (step by step) and calculation. Assume 3.03 and 0.238 represent

ID: 3126639 • Letter: P

Question

Please show work (step by step) and calculation.

Assume 3.03 and 0.238 represent the population (=parametric) mean and population standard deviation, respectively, for the variable length (in cm) in a population of a species of fish.

a) Calculate the probability of sampling at random a fish that is smaller in size than the value you would obtain by subtracting half the standard deviation from the average [ – (/2)]

b) Calculate the probability of sampling at random a fish that is greater in size than the value you would obtain by adding half the standard deviation from the average [ + (/2)]

c) Calculate the probability of sampling at random a fish that has a size between the two values [ – (/2), + (/2)] used in parts “a” and “b,” respectively

d) Calculate the 25th and 75th percentiles of fish size for the population.

Imagine that 5 individuals are sampled at random from this fish population. Calculate the probability that the average calculated will be less than the value: – (/3)

NOTE: Assume the variable is normally distributed and use bell-shaped curve diagrams to shade the areas that correspond with the answers to questions “a” through “d”

Explanation / Answer

a)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value = 3.03 - 0.238/2 =   2.911      
u = mean =    3.03      
          
s = standard deviation =    0.238      
          
Thus,          
          
z = (x - u) / s =    -0.5      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -0.5   ) =    0.308537539 [ANSWER]

*****************

b)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value = 3.03+0.238/2 =    3.149      
u = mean =    3.03      
          
s = standard deviation =    0.238      
          
Thus,          
          
z = (x - u) / s =    0.5      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   0.5   ) =    0.308537539 [ANSWER]

*******************

C)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    2.911      
x2 = upper bound =    3.149      
u = mean =    3.03      
          
s = standard deviation =    0.238      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -0.5      
z2 = upper z score = (x2 - u) / s =    0.5      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.308537539      
P(z < z2) =    0.691462461      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.382924923   [ANSWER]

********************

d)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.25      
          
Then, using table or technology,          
          
z =    -0.67448975      
          
As x = u + z * s,          
          
where          
          
u = mean =    3.03      
z = the critical z score =    -0.67448975      
s = standard deviation =    0.238      
          
Then          
          
x = critical value =    2.869471439   [ANSWER, 25TH PERCENTILE]

********

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.75      
          
Then, using table or technology,          
          
z =    0.67448975      
          
As x = u + z * s,          
          
where          
          
u = mean =    3.03      
z = the critical z score =    0.67448975      
s = standard deviation =    0.238      
          
Then          
          
x = critical value =    3.190528561   [ANSWER, 75TH PERCENTILE]

*****************************

e)

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value = 3.03 - 0.238/3 =   2.950666667      
u = mean =    3.03      
n = sample size =    5      
s = standard deviation =    0.238      
          
Thus,          
          
z = (x - u) * sqrt(n) / s =    -0.745355992      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -0.745355992   ) =    0.22802827 [ANSWER]