Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Mean comparison with dependent samples To study the effects of an advertising ca

ID: 3130518 • Letter: M

Question

Mean comparison with dependent samples

To study the effects of an advertising campaign at a supply chain, several stores are randomly selected with the following observed before and afteradvertising monthly sale revenues (in millions of dollars): Store number - 1, 2, 3, 4, 5 Old sale revenue(mil. of dollars) - 7.3, 5.2, 8.4, 4.9, 9.1 New sale revenue (mil. of dollars) - 7.5, 6.9, 8.2, 6.4, 9.3 Let be the mean of old sale revenues and be the mean of new sale revenues, both in millions of dollars per month.

(a) At the level of significance = 0.09, test H: versus H: < .

(b) Interpret your results in part (a).

(c) Find the pvalue for the test in part (a). Would you reject H if = 0.05?

(d) Construct the 91% confidence interval for mean of the difference between before and afteradvertising sale revenues.

Explanation / Answer

a)

Let ud = u2 - u1.              
Formulating the null and alternative hypotheses,              
              
Ho:   ud   <=   0  
Ha:   ud   >   0
  
At level of significance =    0.09          
As we can see, this is a    right   tailed test.      
              
Calculating the standard deviation of the differences (third column):              
              
s =    0.624984848          
              
Thus, the standard error of the difference is sD = s/sqrt(n):              
              
sD =    0.279501721          
              
Calculating the mean of the differences (third column):              
              
XD =    0.68          
              
As t = [XD - uD]/sD, where uD = the hypothesized difference =    0   , then      
              
t =    2.43290094          
              
As df = n - 1 =    4          
              
Then the critical value of t is              
              
tcrit =    +   1.622577966      
              
As t > 1.6226,   WE REJECT THE NULL HYPOTHESIS.       [ANSWER]

************************

b)

Hence, there is significant evidence at 0.09 level that the mean of new sale revenues is greater than the mean of old sale revenues. [CONCLUSION]

***********************

c)


Also, using technology to get p value,              
              
p =        0.035877941      
              
As P < 0.05, WE REJECT THE NULL HYPOTHESIS.

**************************

d)

For the   0.91   confidence level,      
              
alpha/2 = (1 - confidence level)/2 =    0.045          
t(alpha/2) =    2.226099557          
              
lower bound = [X1 - X2] - t(alpha/2) * sD =    0.057801342          
upper bound = [X1 - X2] + t(alpha/2) * sD =    1.302198658          
              
Thus, the confidence interval is              
              
(   0.057801342   ,   1.302198658   ) [ANSWER]

********************************