55, 57, 57, 73, 63, 65, 60, 71, 58, 71, 62, 82, 63, 74, 69, 59, 64, 63, 76, 77,
ID: 3130963 • Letter: 5
Question
55,
57,
57,
73,
63,
65,
60,
71,
58,
71,
62,
82,
63,
74,
69,
59,
64,
63,
76,
77,
58,
77,
69,
75,
69,
70,
68,
63,
72,
63,
61,
73,
73,
83,
46,
62,
68,
67,
69,
60,
64,
64,
63,
77,
67,
77,
72,
74,
64,
71,
75,
70,
60,
63,
76,
64,
61,
68,
79,
77,
72,
55,
62,
59,
60,
77,
63,
64,
66,
79,
73,
61,
65,
75,
71,
72,
75,
64,
76,
67,
63,
69,
65,
79,
68,
79,
60,
69,
84,
69,
69,
66,
68,
80,
64,
65,
65,
74,
67,
67,
66,
77,
61,
62,
62,
70,
73,
66,
74,
64
Explanation / Answer
A)
B)FOR A NORMAL DISTRIBUTION BY 68-96-99.7 RULE THE 68% ARE UNDER ONE STANDARD DEVIATION AND 95% ARE UNDER TWO STANDARD DEVIATION
= THEREFORE FOR 68% = 0.68
Z SCORE = 0.47
HENCE X = MEAN+Z*STANDARD DEV = 67.92+0.47*6.91=71.16
FOR 95% = 0.95
THE Z SCORE = 1.65
X = 67.92+1.65*6.91 = 79.32
C)P(X<65)
For x = 65, the z-value z = (65 - 67.92) / 6.91 = -0.42