Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The national average for the math portion of the College Board\'s SAT test is 54

ID: 3134572 • Letter: T

Question

The national average for the math portion of the College Board's SAT test is 540. The College Board periodically rescales the test scores such that the standard deviation is approximately 75. Answer the following questions using a bell-shaped distribution and the empirical rule for the math test scores.

If required, round your answers to two decimal places.

(a) What percentage of students have an SAT math score greater than 615? % (b) What percentage of students have an SAT math score greater than 690? % (c) What percentage of students have an SAT math score between 465 and 540? % (d) What is the z-score for student with an SAT math score of 625? (e) What is the z-score for a student with an SAT math score of 415

Explanation / Answer

A)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    615      
u = mean =    540      
          
s = standard deviation =    75      
          
Thus,          
          
z = (x - u) / s =    1      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   1   ) =    0.158655254 [ANSWER]

*****************

b)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    690      
u = mean =    540      
          
s = standard deviation =    75      
          
Thus,          
          
z = (x - u) / s =    2      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   2   ) =    0.022750132 [ANSWER]

*********************

c)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    465      
x2 = upper bound =    540      
u = mean =    540      
          
s = standard deviation =    75      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -1      
z2 = upper z score = (x2 - u) / s =    0      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.158655254      
P(z < z2) =    0.5      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.341344746   [ANSWER]

*************************

d)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    625      
u = mean =    540      
          
s = standard deviation =    75      
          
Thus,          
          
z = (x - u) / s =    1.133333333   [ANSWER]

*************************

e)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    415      
u = mean =    540      
          
s = standard deviation =    75      
          
Thus,          
          
z = (x - u) / s =    -1.666666667   [ANSWER]