Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

An online site presented this question, \'Would the recent norovirus outbreak de

ID: 3150125 • Letter: A

Question

An online site presented this question, 'Would the recent norovirus outbreak deter you from taking a cruise?' Among the 34,889 people who responded, 61% answered 'yes'. Use the sample data to construct a 90% confidence interval estimate for the proportion of the population of all people who would respond 'yes' to that question. Does the confidence interval provide a good estimate of the population proportion (Round to three decimal places as needed.) Does the confidence interval provide a good estimate of the population proportion? Yes, the sample is large enough to provide a good estimate of the population proportion. N, the sample is a voluntary sample and might not be representative of the population. Yes, all the assumptions for a confidence interval are satisfied. No, the responses are not independent.

Explanation / Answer

A)

Note that              
              
p^ = point estimate of the population proportion = x / n =    0.61          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.002611277          
              
Now, for the critical z,              
alpha/2 =   0.05          
Thus, z(alpha/2) =    1.644853627          
Thus,              
Margin of error = z(alpha/2)*sp =    0.004295169          
lower bound = p^ - z(alpha/2) * sp =   0.605704831          
upper bound = p^ + z(alpha/2) * sp =    0.614295169          
              
Thus, the confidence interval is              
              
(   0.605704831   ,   0.614295169   ) [ANSWER]

***********************

b)

This is an online poll, so only those who go to that website gets sampled. Hence,

OPTION B: No, the sample is a voluntary sample and might not be a representative of the population.