Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Please show steps and formulas. Thanks! Two independent sampling stations (upstr

ID: 3154982 • Letter: P

Question

Please show steps and formulas. Thanks!

Two independent sampling stations (upstream and downstream) were chosen to study the effectiveness of a species diversity index in indicating aquatic degradation due to acid mine drainage. For 12 monthly samples collected at the downstream station, the species diversity index had a mean value x_1 = 3.11 and a std. dev. s_1 = 0.771, while 10 monthly samples collected at the upstream station had x_2 = 2.04 and s_2 = 0.448. Find a 90% CI for the difference between the population means for the two locations, assuming that the populations are approx, normally distributed with equal variances.

Explanation / Answer

Calculating the means of each group,              
              
X1 =    3.11          
X2 =    2.04          
              
Calculating the standard deviations of each group,              
              
s1 =    0.771          
s2 =    0.448          
              
Thus, the pooled standard deviation is given by              
              
S = sqrt[((n1 - 1)s1^2 + (n2 - 1)(s2^2))/(n1 + n2 - 2)]               
              
As n1 =    12   , n2 =    10  
              
Then              
              
S =    0.645956152          
              
Thus, the standard error of the difference is              
              
Sd = S sqrt (1/n1 + 1/n2) =    0.2765819          
              
For the   0.9   confidence level, then      
              
alpha/2 = (1 - confidence level)/2 =    0.05          
t(alpha/2) =    1.724718243          
              
lower bound = [X1 - X2] - t(alpha/2) * Sd =    0.357572237          
upper bound = [X1 - X2] + t(alpha/2) * Sd =    1.782427763          
              
Thus, the confidence interval for u1 - u2 is              
              
(   0.357572237   ,   1.782427763   ) [ANSWER]

*****************************************************

Hi! If you use another method/formula in calculating the degrees of freedom in this t-test, please resubmit this question together with the formula/method you use in determining the degrees of freedom. That way we can continue helping you! Thanks!