Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Assuming that you have a sample of n_1 = 8, with the sample mean X_1 = 42, and a

ID: 3160524 • Letter: A

Question

Assuming that you have a sample of n_1 = 8, with the sample mean X_1 = 42, and a sample standard deviation S_1 = 4, and you have an independent sample of n_2 = 15 from another population with a sample mean of X_2 = 34 and a sample standard deviation S_2=5, What is the value of the pooled-variance t_STAT test statistic for testing H_0: = mu_1 = mu_2? In finding the critical value, how many degrees of freedom are there? Using the level of significance a = 0.01, what is the critical value for a one-tail test of hypothesis H_0:mu_1 lessthanorequalto mu_2 against the alternative, H_1: mu_1> mu_2? What is your statistical decision? What assumptions about the two populations are necessary in Problem 1.

Explanation / Answer

a)

Formulating the null and alternative hypotheses,              
              
Ho:   u1 - u2   <=   0  
Ha:   u1 - u2   >   0  
At level of significance =    0.01          
As we can see, this is a    right   tailed test.      
Calculating the means of each group,              
              
X1 =    42          
X2 =    34          
              
Calculating the standard deviations of each group,              
              
s1 =    4          
s2 =    5          
              
Thus, the pooled standard deviation is given by              
              
S = sqrt[((n1 - 1)s1^2 + (n2 - 1)(s2^2))/(n1 + n2 - 2)]               
              
As n1 =    8   , n2 =    15  
              
Then              
              
S =    4.69041576          

              
Thus, the standard error of the difference is              
              
Sd = S sqrt (1/n1 + 1/n2) =    2.053452378          
              
As ud = the hypothesized difference between means =    0   , then      
              
t = [X1 - X2 - ud]/Sd =    3.895878028   [ANSWER, pooled variance t statistic]

****************************************      
              
b)

Getting the critical value using table/technology,              
df = n1 + n2 - 2 =    21   [ANSWER]

*****************************

c)      

Hence, by table/technology,

tcrit = 2.517648016   [ANSWER]

**************************

d)

As t > 2.518, we REJECT HO. [ANSWER]

***************************

e)

We assume that the populations are approximately normally distributed. [ANSWER]  

*****************************************************

Hi! If you use another method/formula in calculating the degrees of freedom in this t-test, please resubmit this question together with the formula/method you use in determining the degrees of freedom. That way we can continue helping you! Thanks!