Construct a well-designed large upper diagonal matrix plot of the ECONL data set
ID: 3182784 • Letter: C
Question
Construct a well-designed large upper diagonal matrix plot of the ECONL data set using the “*” plotting symbol with a blue color and symbol size 1. Include a smoothed line for each graph in the matrix plot. The response should be the first variable at the top-left of the matrix plot and appear on the “Y-axis “in all plots where it appears. Calculate the correlations and corresponding p-values among all pairs of variables. Submit the output format used in class.
GNPDFLTR
UNEMPL
MILPOP
P0P
Year
EMP
GNP
83
2356
1590
107608
1947
60323
234289
88.5
2325
1456
108632
1948
61122
259426
88.2
3682
1616
109773
1949
60171
258054
89.5
3351
1650
110929
1950
61187
284599
96.2
2099
3099
112075
1951
63221
328975
98.1
1932
3594
113270
1952
63639
346999
99
1870
3547
115094
1953
64989
365385
100
3578
3350
116219
1954
63761
363112
101.2
2904
3048
117388
1955
66019
397469
104.6
2822
2857
118734
1956
67857
419180
108.4
2936
2798
120445
1957
68169
442769
110.8
4681
2637
121950
1958
66513
444546
112.6
3813
2552
123366
1959
68655
482704
114.2
3931
2514
125368
1960
69564
502601
115.7
4806
2572
127852
1961
69331
518173
116.9
4007
2827
130081
1962
70551
554894
(b) (15 points In the order listed in the ECONL Data Set description below, precisely explain how the response appears to be affected by each of the explanatory variables.
ECONL Economic Date Set
Response is GNP
GNP: Gross National Product
GNPDFLTR: Gross National Product Deflator 1954=100 UNEMPL: number of people unemployed
MILPOP: number people in armed forces
POP: "Noninstitutionalized" population 14 years of age YR: Year
EMP: Number of people employed
GNPDFLTR
UNEMPL
MILPOP
P0P
Year
EMP
GNP
83
2356
1590
107608
1947
60323
234289
88.5
2325
1456
108632
1948
61122
259426
88.2
3682
1616
109773
1949
60171
258054
89.5
3351
1650
110929
1950
61187
284599
96.2
2099
3099
112075
1951
63221
328975
98.1
1932
3594
113270
1952
63639
346999
99
1870
3547
115094
1953
64989
365385
100
3578
3350
116219
1954
63761
363112
101.2
2904
3048
117388
1955
66019
397469
104.6
2822
2857
118734
1956
67857
419180
108.4
2936
2798
120445
1957
68169
442769
110.8
4681
2637
121950
1958
66513
444546
112.6
3813
2552
123366
1959
68655
482704
114.2
3931
2514
125368
1960
69564
502601
115.7
4806
2572
127852
1961
69331
518173
116.9
4007
2827
130081
1962
70551
554894
Explanation / Answer
This question is easy to solve using R Statistical Language.
Just create 2 a matrix m1 and then find its upper diagonal matrix (using m1 = upper.tri(m1)).
Appearnce and labels can be modified. Corr - used to find correlation, pnorm for p-value in different distributions.