Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Construct a well-designed large upper diagonal matrix plot of the ECONL data set

ID: 3182784 • Letter: C

Question

Construct a well-designed large upper diagonal matrix plot of the ECONL data set using the “*” plotting symbol with a blue color and symbol size 1. Include a smoothed line for each graph in the matrix plot. The response should be the first variable at the top-left of the matrix plot and appear on the “Y-axis “in all plots where it appears. Calculate the correlations and corresponding p-values among all pairs of variables. Submit the output format used in class.

GNPDFLTR

UNEMPL

MILPOP

P0P

Year

EMP

GNP

83

2356

1590

107608

1947

60323

234289

88.5

2325

1456

108632

1948

61122

259426

88.2

3682

1616

109773

1949

60171

258054

89.5

3351

1650

110929

1950

61187

284599

96.2

2099

3099

112075

1951

63221

328975

98.1

1932

3594

113270

1952

63639

346999

99

1870

3547

115094

1953

64989

365385

100

3578

3350

116219

1954

63761

363112

101.2

2904

3048

117388

1955

66019

397469

104.6

2822

2857

118734

1956

67857

419180

108.4

2936

2798

120445

1957

68169

442769

110.8

4681

2637

121950

1958

66513

444546

112.6

3813

2552

123366

1959

68655

482704

114.2

3931

2514

125368

1960

69564

502601

115.7

4806

2572

127852

1961

69331

518173

116.9

4007

2827

130081

1962

70551

554894

(b) (15 points In the order listed in the ECONL Data Set description below, precisely explain how the response appears to be affected by each of the explanatory variables.

ECONL Economic Date Set

Response is GNP

GNP: Gross National Product

GNPDFLTR: Gross National Product Deflator 1954=100 UNEMPL: number of people unemployed

MILPOP: number people in armed forces

POP: "Noninstitutionalized" population 14 years of age YR: Year

EMP: Number of people employed

GNPDFLTR

UNEMPL

MILPOP

P0P

Year

EMP

GNP

83

2356

1590

107608

1947

60323

234289

88.5

2325

1456

108632

1948

61122

259426

88.2

3682

1616

109773

1949

60171

258054

89.5

3351

1650

110929

1950

61187

284599

96.2

2099

3099

112075

1951

63221

328975

98.1

1932

3594

113270

1952

63639

346999

99

1870

3547

115094

1953

64989

365385

100

3578

3350

116219

1954

63761

363112

101.2

2904

3048

117388

1955

66019

397469

104.6

2822

2857

118734

1956

67857

419180

108.4

2936

2798

120445

1957

68169

442769

110.8

4681

2637

121950

1958

66513

444546

112.6

3813

2552

123366

1959

68655

482704

114.2

3931

2514

125368

1960

69564

502601

115.7

4806

2572

127852

1961

69331

518173

116.9

4007

2827

130081

1962

70551

554894

Explanation / Answer

This question is easy to solve using R Statistical Language.

Just create 2 a matrix m1 and then find its upper diagonal matrix (using m1 = upper.tri(m1)).

Appearnce and labels can be modified. Corr - used to find correlation, pnorm for p-value in different distributions.