Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Matlab/Linear Algebra help. Hello, I have the following problem and need help. P

ID: 3210023 • Letter: M

Question

Matlab/Linear Algebra help.

Hello,

I have the following problem and need help. Please see photo attached.

Let A and B be two 5 x 5 matrices with random entries between 0 and 1 . Test whether (A +15)(A-Is) = A2-15, where 15-diag(1, 1, 1, 1, 1) E R5,5 . The best way to do this is to compute (A + Is) (A Is) (A2 - Is) and check if it is the zero matrix. ·Test whether (A + B) (A-B) A2-B2 In homework 2 you were asked to solve the system Ax b with 31 -8 11 11 6 25 13 using the rref command and print on screen the error vector Ax - b, and compute its norm norm (A*x-b). Compare this error to the error you obtain when using the "backslash" operator to solve the system above.

Explanation / Answer

Homework 1:

A=rand(5);% we use rand to create matrix with random entries between 0 and 1
B=rand(5);
% given I5 is a diagonal matrix with diagonal elements [1,1,1,1,1]
I5=diag([1, 1,1,1,1]);

result=(A+I5)*(A-I5)-(A*A-I5)
check=isequal(result,zeros(5));% checks whether result is a zero matrix or not

if check==1
    test='true'
else
    test='false'
end

result2=(A+B)*(A-B)-(A*A-B*B)
check2=isequal(result2,zeros(5));%checks whether result is a zero matrix or not

if check2==1
    test2='true'
else
    test2='false'
end

ouput:

result =

   1.0e-15 *

    0.1110         0   -0.2220   -0.2220    0.1110
         0         0         0    0.2220    0.2220
         0         0    0.2220   -0.2220   -0.1110
         0         0         0   -0.2220         0
         0         0    0.2220         0         0


test =

false


result2 =

    0.3049    1.1886    0.3702    1.4689    0.2340
   -0.4369    0.2841   -0.6876    0.2570   -0.3083
   -0.6002   -0.1470   -0.6067    0.1079   -0.5107
   -0.2936    0.3645   -0.0603    0.5142   -0.1982
   -0.0336   -0.0360    0.0290    0.5402   -0.4964


test2 =

false

Note: Theoretically test1 is true and the result should be a zero matrix but we are dealing with MATLAB which operates on floating point arithmetic rather than actual arithmetic which has limited precision . so we got the result as false. To get rid of it we need to round off the result to 4 digits using the command   -- round(result,4)... wherever we need the result.

Homework 2:

A=[31 -8 11;-8 15 -6;11 -6 25];
b=[8;-4;13];
aug=[A b];% creating augmented matrix
s=rref(aug);% reduced row echelon form of augmented matrix
x=s(:,4);% result for x 4th column of rref of augmented matrix gives us the result
error=A*x-b % error vector
mat_norm=norm(error);% find norm of error vector
x2=A;% solving the system of equations using backslash operator or mldivide
error2=A*x2-b;% error vector using solutions through backslash operator
check=isequal(error,error2);

if check==1
    test='true'
else
    test='false'
end

ouput:

error =

   1.0e-04 *

   -0.0991
    0.1261
   -0.7058


error2 =

   1.0e-14 *

         0
         0
   -0.1776


test =

false