Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Quarterly sales totals are shown below. quarter year 1 year 2 year 3 year 4 1 57

ID: 3217676 • Letter: Q

Question

Quarterly sales totals are shown below.

quarter

year 1

year 2

year 3

year 4

1

57

73

89

105

2

79

95

111

127

3

52

68

84

100

4

61

77

93

109

Use multiple regression with dummy variables to develop an additive decomposition forecasting model for these data.

Model the trend component using the time periods, numbered 1-16. Model the seasonality using dummy variables for quarters 1-3 (use quarter 4 as the baseline).

Hints: Copy-and-paste data into Excel. Re-format the data into columns. Create a period variable and dummy variables for quarter 1, quarter 2, and quarter 3.

Fill in the blanks below with the coefficients that you estimate from the data.

Predicted sales =

+

x period +

x Q1 +

x Q2 +

quarter

year 1

year 2

year 3

year 4

1

57

73

89

105

2

79

95

111

127

3

52

68

84

100

4

61

77

93

109

Explanation / Answer

Answer:

MINITAB used

Regression Equation

sales = 45.00 + 4.000 period + 8.000 Q1 + 26.00 Q2 - 5.000 Q3

period

Q1

Q2

Q3

sales

1

1

0

0

57

2

0

1

0

79

3

0

0

1

52

4

0

0

0

61

5

1

0

0

73

6

0

1

0

95

7

0

0

1

68

8

0

0

0

77

9

1

0

0

89

10

0

1

0

111

11

0

0

1

84

12

0

0

0

93

13

1

0

0

105

14

0

1

0

127

15

0

0

1

100

16

0

0

0

109

Regression Analysis: sales versus period, Q1, Q2, Q3

Analysis of Variance

Source      DF   Adj SS   Adj MS F-Value P-Value

Regression   4 6779.00 1694.75        *        *

period     1 5120.00 5120.00        *        *

Q1         1   121.18   121.18        *        *

Q2         1 1319.02 1319.02        *        *

Q3         1    49.69    49.69        *        *

Error       11     0.00     0.00

Total       15 6779.00

Model Summary

S     R-sq R-sq(adj) R-sq(pred)

0 100.00%    100.00%     100.00%

Coefficients

Term        Coef SE Coef T-Value P-Value   VIF

Constant   45.00     0.00        *        *

period     4.000    0.000        *        * 1.06

Q1         8.000    0.000        *        * 1.58

Q2         26.00     0.00        *        * 1.54

Q3        -5.000    0.000        *        * 1.51

Regression Equation

sales = 45.00 + 4.000 period + 8.000 Q1 + 26.00 Q2 - 5.000 Q3

period

Q1

Q2

Q3

sales

1

1

0

0

57

2

0

1

0

79

3

0

0

1

52

4

0

0

0

61

5

1

0

0

73

6

0

1

0

95

7

0

0

1

68

8

0

0

0

77

9

1

0

0

89

10

0

1

0

111

11

0

0

1

84

12

0

0

0

93

13

1

0

0

105

14

0

1

0

127

15

0

0

1

100

16

0

0

0

109