Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Refer to the Real Estate data. Use the selling price of the home as the dependen

ID: 3229466 • Letter: R

Question

Refer to the Real Estate data. Use the selling price of the home as the dependent variable and determine the regression equation with the numbers of bedrooms, size of the house, whether there is a pool, distance from the center of the city, township, whether there is an attached garage, and the number of bathrooms as independent variables.

Write out the regression equation. How much does a garage or an extra bathroom add to the selling price of a home?

Determine the value of R-squared. Provide an interpretation of the variance R-squared represents.

Develop a correlation matrix. Which independent variables have strong or weak correlations with the dependent variable (price)?  

Price Bedrooms Square Feet Pool Distance Township Garage Baths 245,400 2 2100 0 12 1 1 2 221,100 3 2300 0 18 1 0 1.5 232,200 3 1900 0 16 1 1 1.5 198,300 4 2100 0 19 1 1 1.5 192,600 6 2200 0 14 1 0 2 147,400 6 1700 0 12 1 0 2 224,000 3 1900 0 6 1 1 2 220,900 2 2300 0 12 1 1 2 199,000 3 2500 0 18 1 0 1.5 139,900 2 2100 1 28 1 0 1.5 224,800 3 2200 1 17 1 1 2.5 216,800 3 2200 1 15 1 1 2 176,000 4 2200 1 15 1 1 2 189,400 4 2200 1 24 1 1 2 125,900 2 2400 1 28 1 0 1.5 192,900 4 1900 0 14 2 1 2.5 166,200 3 2000 0 16 2 1 2 307,800 3 2400 0 21 2 1 3 209,700 5 2200 0 13 2 1 2 207,500 3 2100 0 10 2 0 2 209,700 4 2200 0 19 2 1 2 173,600 4 2100 0 14 2 1 2.5 188,300 6 2100 0 14 2 1 2.5 213,600 2 2200 1 16 2 0 2.5 271,800 2 2100 1 9 2 1 2.5 281,300 3 2100 1 16 2 1 2 247,700 5 2400 1 16 2 1 2 216,000 4 2300 1 19 2 0 2 273,200 5 2200 1 16 2 1 3 251,400 3 1900 1 12 2 1 2 154,300 2 2000 1 13 2 0 2 294,000 2 2100 1 13 2 1 2.5 192,200 2 2400 1 16 2 0 2.5 244,600 2 2300 1 9 2 1 2.5 253,200 3 2300 1 16 2 1 2 172,700 4 2200 0 16 3 0 2 206,000 3 2100 0 9 3 0 1.5 166,500 3 1600 0 19 3 0 2.5 190,900 3 2200 0 18 3 1 2 254,300 4 2500 0 15 3 1 2 176,300 2 2000 0 17 3 0 2 155,400 4 2400 0 16 3 0 2 242,100 3 2300 1 12 3 0 2 327,200 6 2500 1 15 3 1 2 292,400 4 2100 1 14 3 1 2 246,100 4 2100 1 18 3 1 2 194,400 2 2300 1 11 3 0 2 233,000 3 2200 1 14 3 1 1.5 234,000 2 1700 1 19 3 1 2 199,800 3 2100 1 19 3 1 2 236,400 5 2200 1 20 3 1 2 172,400 3 2200 1 23 3 0 2 246,000 6 2300 1 7 3 1 3 312,100 7 2400 1 13 3 1 3 289,800 6 2000 1 21 3 1 3 217,800 3 2500 1 12 3 0 2 294,500 6 2700 1 15 3 1 2 263,200 4 2300 1 14 3 1 2 221,500 4 2300 1 18 3 1 2 175,000 2 2500 1 11 3 0 2 207,500 5 2300 0 21 4 0 2.5 198,900 3 2200 0 10 4 1 2 209,300 6 1900 0 15 4 1 2 182,700 4 2000 0 14 4 0 2.5 205,100 3 2000 0 20 4 0 2 175,600 4 2300 0 24 4 1 2 171,600 3 2000 0 16 4 0 2 269,900 5 2200 0 11 4 1 2.5 186,700 5 2500 0 21 4 0 2.5 179,000 3 2400 0 10 4 1 2 188,300 6 2100 0 15 4 1 2 182,400 4 2100 1 19 4 0 2 266,600 4 2400 1 13 4 1 2 209,000 2 1700 1 8 4 1 1.5 270,800 6 2500 1 7 4 1 2 252,300 4 2600 1 8 4 1 2 345,300 8 2600 1 9 4 1 2 187,000 2 1900 1 26 4 0 2 257,200 2 2100 1 9 4 1 2 294,300 7 2400 1 8 4 1 2 125,000 2 1900 1 18 4 0 1.5 164,100 4 2300 1 19 4 0 2 240,000 4 2600 1 13 4 1 2 188,100 2 1900 1 8 4 1 1.5 243,700 6 2700 1 7 4 1 2 227,100 4 2900 1 8 4 1 2 310,800 8 2900 1 9 4 1 2 179,000 3 2400 1 8 4 1 2 173,600 4 2100 1 9 4 1 2 263,100 4 2300 0 17 5 1 2 173,100 2 2200 0 21 5 1 1.5 236,800 4 2600 0 17 5 1 2 209,300 5 2100 1 20 5 0 1.5 326,300 6 2100 1 11 5 1 3 180,400 2 2000 1 11 5 0 2 207,100 2 2000 1 11 5 1 2 177,100 2 1900 1 10 5 1 2 312,100 6 2600 1 7 5 1 2.5 269,200 5 2200 1 8 5 1 3 228,400 3 2300 1 17 5 1 1.5 222,100 2 2100 1 9 5 1 2 188,300 5 2300 1 20 5 0 1.5 293,700 6 2400 1 11 5 1 3 227,100 4 2900 1 20 5 0 1.5 188,300 5 2300 1 11 5 1 3

Explanation / Answer

Solution:

Required regression analysis and correlation matrix are given as below:

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.730476016

R Square

0.53359521

Adjusted R Square

0.499937132

Standard Error

33310.64487

Observations

105

ANOVA

df

SS

MS

F

Significance F

Regression

7

1.23136E+11

1.7591E+10

15.85340718

1.00797E-13

Residual

97

1.07631E+11

1109599062

Total

104

2.30768E+11

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

43137.24985

39739.27819

1.08550663

0.280387731

-35734.215

122008.7147

Bedrooms

7375.497615

2590.021158

2.84765921

0.005376578

2235.022699

12515.97253

Square Feet

38.62695458

14.75462387

2.6179559

0.010263711

9.343111206

67.91079794

Pool

19111.4418

7126.552713

2.68172321

0.008609583

4967.207745

33255.67585

Distance

-1012.668849

741.384712

-1.3659155

0.175124168

-2484.11224

458.7745423

Township

-1739.007792

2699.416357

-0.6442162

0.520955701

-7096.601891

3618.586306

Garage

35498.01891

7675.838476

4.62464381

1.15902E-05

20263.6047

50732.43313

Baths

23092.54587

9058.307715

2.5493223

0.012360444

5114.31297

41070.77877

Price

Bedrooms

Square Feet

Pool

Distance

Township

Garage

Baths

Price

1

Bedrooms

0.467377108

1

Square Feet

0.371041595

0.383456103

1

Pool

0.29406475

0.005301227

0.20059049

1

Distance

-0.347031166

-0.153355767

-0.1171945

-0.13938244

1

Township

0.128175517

0.200126798

0.18464617

0.201094525

-0.208592968

1

Garage

0.526273941

0.234102158

0.08302732

0.114153335

-0.359294882

0.056667827

1

Baths

0.382172576

0.328930238

0.02436486

0.054532583

-0.194992972

0.049669636

0.221289

1

The regression equation is given as below:

Price = 43137.24985 + 7375.497615* Bedrooms + 38.62695458* Square Feet + 19111.4418* Pool - 1012.668849* Distance - 1739.007792* Township + 35498.01891* Garage + 23092.54587* Baths

There is an increase of $35498.01891 in the selling price as unit increase in garage.

There is an increase of $23092.54587 in the selling price as unit increase in number of bathrooms.

The value of the coefficient of determination or R square is given as 0.53359521, which means about 53.36% of the variation in the dependent variable is explained by the independent variables.

The correlation matrix shows that two variables garage and price have relatively strong relationship or correlation while the Variables Township and price have weakest or lowest correlation or relationship.

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.730476016

R Square

0.53359521

Adjusted R Square

0.499937132

Standard Error

33310.64487

Observations

105

ANOVA

df

SS

MS

F

Significance F

Regression

7

1.23136E+11

1.7591E+10

15.85340718

1.00797E-13

Residual

97

1.07631E+11

1109599062

Total

104

2.30768E+11

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

43137.24985

39739.27819

1.08550663

0.280387731

-35734.215

122008.7147

Bedrooms

7375.497615

2590.021158

2.84765921

0.005376578

2235.022699

12515.97253

Square Feet

38.62695458

14.75462387

2.6179559

0.010263711

9.343111206

67.91079794

Pool

19111.4418

7126.552713

2.68172321

0.008609583

4967.207745

33255.67585

Distance

-1012.668849

741.384712

-1.3659155

0.175124168

-2484.11224

458.7745423

Township

-1739.007792

2699.416357

-0.6442162

0.520955701

-7096.601891

3618.586306

Garage

35498.01891

7675.838476

4.62464381

1.15902E-05

20263.6047

50732.43313

Baths

23092.54587

9058.307715

2.5493223

0.012360444

5114.31297

41070.77877