Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Consider the following time series data. a. Which of the following time series p

ID: 3229475 • Letter: C

Question

Consider the following time series data.

a. Which of the following time series plots is correct for this data?

(Select your answer: time series plot a, time series plot b, time series plot c)

i) What type of pattern exists in the data?
(Select your answer: upward linear trend, nonlinear trend, linear trend and a seasonal pattern, slight curvature, downward linear trend)

b. Use the following dummy variables to develop an estimated regression equation to account for any seasonal and linear trend effects in the data: Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise (to 3 decimals if necessary).

______ + ______ Qtr1 - ______ Qtr2 - ______ Qtr3 + _____ t

c. Compute the quarterly forecasts for next year (to 2 decimals).

Quarter 1 forecast ______ Quarter 2 forecast ______ Quarter 3 forecast ______ Quarter 4 forecast ______
Quartel Year 1 Year 2 Year 3 a 7668 a 6357 a 4235 a 1234

Explanation / Answer

Answer:

a). Which of the following time series plots is correct for this data?

time series plot c

i) What type of pattern exists in the data?

linear trend and a seasonal pattern

b. Use the following dummy variables to develop an estimated regression equation to account for any seasonal and linear trend effects in the data: Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise (to 3 decimals if necessary).

3.417 + 0.219 Qtr1 - 2.188 Qtr2 – 1.594 Qtr3 + 0.406 t

c. Compute the quarterly forecasts for next year (to 2 decimals).

Quarter 1 forecast

8.92

Quarter 2 forecast

6.92

Quarter 3 forecast

7.92

Quarter 4 forecast

9.92

Regression Analysis

0.959

Adjusted R²

0.936

n

12

R

0.979

k

4

Std. Error

0.469

Dep. Var.

data

ANOVA table

Source

SS

df

MS

F

p-value

Regression

36.1250

4  

9.0313

41.01

.0001

Residual

1.5417

7  

0.2202

Total

37.6667

11  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=7)

p-value

95% lower

95% upper

Intercept

3.417

0.4284

7.975

.0001

2.4036

4.4297

Q1

0.219

0.4029

0.543

.6040

-0.7339

1.1714

Q2

-2.188

0.3921

-5.580

.0008

-3.1146

-1.2604

Q3

-1.594

0.3854

-4.135

.0044

-2.5051

-0.6824

t

0.406

0.0415

9.794

2.45E-05

0.3082

0.5043

Predicted values for: data

95% Confidence Intervals

95% Prediction Intervals

Q1

Q2

Q3

t

Predicted

lower

upper

lower

upper

Leverage

1

0

0

13

8.92

7.904

9.930

7.414

10.419

0.833

0

1

0

14

6.92

5.904

7.930

5.414

8.419

0.833

0

0

1

15

7.92

6.904

8.930

6.414

9.419

0.833

0

0

0

16

9.92

8.904

10.930

8.414

11.419

0.833

Quarter 1 forecast

8.92

Quarter 2 forecast

6.92

Quarter 3 forecast

7.92

Quarter 4 forecast

9.92

Regression Analysis

0.959

Adjusted R²

0.936

n

12

R

0.979

k

4

Std. Error

0.469

Dep. Var.

data

ANOVA table

Source

SS

df

MS

F

p-value

Regression

36.1250

4  

9.0313

41.01

.0001

Residual

1.5417

7  

0.2202

Total

37.6667

11  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=7)

p-value

95% lower

95% upper

Intercept

3.417

0.4284

7.975

.0001

2.4036

4.4297

Q1

0.219

0.4029

0.543

.6040

-0.7339

1.1714

Q2

-2.188

0.3921

-5.580

.0008

-3.1146

-1.2604

Q3

-1.594

0.3854

-4.135

.0044

-2.5051

-0.6824

t

0.406

0.0415

9.794

2.45E-05

0.3082

0.5043

Predicted values for: data

95% Confidence Intervals

95% Prediction Intervals

Q1

Q2

Q3

t

Predicted

lower

upper

lower

upper

Leverage

1

0

0

13

8.92

7.904

9.930

7.414

10.419

0.833

0

1

0

14

6.92

5.904

7.930

5.414

8.419

0.833

0

0

1

15

7.92

6.904

8.930

6.414

9.419

0.833

0

0

0

16

9.92

8.904

10.930

8.414

11.419

0.833