Consider the \"pendulum\" data of the periods T (in seconds) of pendulums of len
ID: 3235539 • Letter: C
Question
Explanation / Answer
#Load Data into R
data<-read.csv("a.csv",head=T)
#Load package MCMCpack
#Create First Model T~1
Model1<-MCMCregress(data$TimeSec~1, sigma.mu = 0, sigma.var = 1,data = data, mcmc = 10000, b0 = 0, B0 = 1,marginal.likelihood = "Chib95")
#Create Second Model T~0+sqrt(L/g)
Model2<-MCMCregress(data$TimeSec~0+sqrt(data$LengthMt/data$GravityA),sigma.mu = 0, sigma.var = 1, data = data, mcmc = 10000, b0 = 0, B0 = 1,marginal.likelihood = "Chib95")
#Create Third Model T~sqrt(L/g)
Model3<-MCMCregress(data$TimeSec~sqrt(data$LengthMt/data$GravityA), sigma.mu = 0, sigma.var = 1,data = data, mcmc = 10000, b0 = 0, B0 = 1,marginal.likelihood = "Chib95")
BF <- BayesFactor(Model1, Model2, Model3)
mod.probs <- PostProbMod(BF)
mod.probs
Using the above R code we see the posterior probability same as given in option D.