Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Please show work. Thank you!! QUESTION 23 Below is some of the regression output

ID: 3267179 • Letter: P

Question

Please show work. Thank you!!

QUESTION 23 Below is some of the regression output from a simple regression of the number of wins for a major league baseball tam and the size amount of money the team is paying its players (expressed millions of $'s) SUMMARY OUTPUT Wins v. Team Payroll Regressiorn Statistics Multiple R R Square Adjusted R Square Standard Error Observations 30 ANOVA df Regression Residual Total 1032.6 2109.7 MS 10326 75.3 13.7 Coefficients Standard Error tStat P-value Lower 95% Upper 95% 16.8 3.515E-16 594 75.9 4.02 Intercept Payroll 67.6 0.205 0.068 0.0009 0.387 Based on the regression output, what lower bound of he 95% con dence interval for ne ce tie Pavol Opleue em ei urn mer sm) detuna aces

Explanation / Answer

Regression Statistics

Multiple R

sqrt*1032.6/3142.3) = 0.5732

R Square

1032.6/3142.3 = 0.3286

Adjusted R Square

1-((((1932.6/3142.3)-1)*(30-1))/(30-1-1))

Standard Error

sqrt (2099.7/28) = 8.6776

Observations

28 + 1 + 1 = 30

ANOVA

df

SS

MS

F

Regression

1032.6/1032.6 = 1

1032.6

1032.6

13.7

Residual

2109.7 / 75.3 = 28

2109.7

75.3

Total

1032.6 + 2109.7 = 3142.3

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

67.6

4.02

16.8

3.52E-16

59.4

75.9

Payroll

0.205

0.068

0.205 / 0.068

0.0009

0.205-(2.048*0.068)

0.387

Regression Statistics

Multiple R

0.5732

R Square

0.3286

Adjusted R Square

1.6954

Standard Error

8.6776

Observations

30

ANOVA

df

SS

MS

F

Regression

1

1032.6

1032.6

13.7

Residual

28

2109.7

75.3

Total

29

3142.3

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

67.6

4.02

16.8

3.52E-16

59.4

75.9

Payroll

0.205

0.068

3.015

0.0009

0.066

0.387

The lower bound of the 95% confidence interval is 0.066

Regression Statistics

Multiple R

sqrt*1032.6/3142.3) = 0.5732

R Square

1032.6/3142.3 = 0.3286

Adjusted R Square

1-((((1932.6/3142.3)-1)*(30-1))/(30-1-1))

Standard Error

sqrt (2099.7/28) = 8.6776

Observations

28 + 1 + 1 = 30