Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

I need help with the following part. i cant seem to get it as it\'s very hard to

ID: 3316544 • Letter: I

Question

I need help with the following part. i cant seem to get it as it's very hard to compute.

The table below shows the shipments (in millions of dollars) of consumer durables and nondurables in Canada. Is there a linear relationship between the shipments of durables and nondurables? In other words, if we know the value of nondurables shipped in any one year, can we predict the value of durables during that year? (Hint: Make the value of nondurables the independent variable.) According to the model, if at any given year the nondurables shipment is $212,000 million, what would the predicted amount for durables shipment be for the same year? Construct a confidence interval for the average y value for $212,000 million. Use the t statistic to test to determine whether the slope is significantl different from zero. Use = 0.05 Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Nondurables $168,619 172,197 176,917 181,437 183,404 188,191 191,910 195,773 198,610 201,837 207,919 210,979 212,628 215,858 218,637 220,268 Durables $65,619 68,623 74,234 79,798 82,857 89,937 92,945 95,414 100,138 107,247 114,703 120,763 117,706 123,783 126,250 129,730 Source: Statistics Canada, CANSIM Table 380-0106, Gross domestic

Explanation / Answer

Result:

r=0.9975

y = -148037.3757+1.258542 x

y predicted=118773

95% CI=(117628, 119919)

Observed t=53.07

Reject Ho.( coefficient is significant)

Regression Analysis

0.9951

n

16

r

0.9975

k

1

Std. Error

1555.596

Dep. Var.

Durables

ANOVA table

Source

SS

df

MS

F

p-value

Regression

6,815,966,500.5356

1  

6,815,966,500.5356

2816.66

0.0000

Residual

33,878,293.9019

14  

2,419,878.1358

Total

6,849,844,794.4375

15  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=14)

p-value

95% lower

95% upper

Intercept

-148,037.3757

4,677.7050

-31.647

0.0000

-158,070.0552

-138,004.6962

Nondurables

1.258542

0.0237

53.072

0.0000

1.2077

1.3094

Predicted values for: Durables

95% Confidence Interval

95% Prediction Interval

Nondurables

Predicted

lower

upper

lower

upper

Leverage

212,000

118,773.4507

117,628.3308

119,918.5707

115,245.986

122,300.915

0.118

Regression Analysis

0.9951

n

16

r

0.9975

k

1

Std. Error

1555.596

Dep. Var.

Durables

ANOVA table

Source

SS

df

MS

F

p-value

Regression

6,815,966,500.5356

1  

6,815,966,500.5356

2816.66

0.0000

Residual

33,878,293.9019

14  

2,419,878.1358

Total

6,849,844,794.4375

15  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=14)

p-value

95% lower

95% upper

Intercept

-148,037.3757

4,677.7050

-31.647

0.0000

-158,070.0552

-138,004.6962

Nondurables

1.258542

0.0237

53.072

0.0000

1.2077

1.3094

Predicted values for: Durables

95% Confidence Interval

95% Prediction Interval

Nondurables

Predicted

lower

upper

lower

upper

Leverage

212,000

118,773.4507

117,628.3308

119,918.5707

115,245.986

122,300.915

0.118