Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Consider the following sample data Use Table 2 y 46 51 28 55 29 53 47 36 x 4048

ID: 3331020 • Letter: C

Question

Consider the following sample data Use Table 2 y 46 51 28 55 29 53 47 36 x 4048 29 44 30 58 60 29 x 13 28 24 11 28 28 29 14 a. Find the sample regression equation, y-hat bo + bxi+bx (Negative values should be indicated by a minus sign. Round your answers to 2 decimal places.) 2281+ 085 xi + b. Construct a 95% confidence interval for EV if Xt equals 50 and x equals 20 (Round your intermediate celculations to 4 decimal places. tener vatue to 3 declmal places, and , answers to 2 decimal places.) Confidence intervall 45.39 to 56.61 c. Construct a 95% predict on intervalfory t equals 50 and X2 equals 20 (Round your intermediate calculations to 4 decimal places, ene value to 3 decimal places, and final answers to 2 decimal places.) Prediction interval to 64.29

Explanation / Answer

Answer:

a).

y = 22.81+0.85*x1-0.71*x2

b).

95% CI = (45.39, 56.61).

c).

95% PI =(37.71, 64.29)

Regression Analysis

0.863

Adjusted R²

0.808

n

8

R

0.929

k

2

Std. Error

4.687

Dep. Var.

y

ANOVA table

Source

SS

df

MS

F

p-value

Regression

693.0450

2  

346.5225

15.78

.0069

Residual

109.8300

5  

21.9660

Total

802.8750

7  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=5)

p-value

95% lower

95% upper

Intercept

22.8074

6.8384

3.335

.0207

5.2288

40.3861

x1

0.8460

0.1523

5.555

.0026

0.4545

1.2376

x2

-0.7053

0.2451

-2.877

.0347

-1.3353

-0.0752

Predicted values for: y

95% Confidence Interval

95% Prediction Interval

x1

x2

Predicted

lower

upper

lower

upper

50

20

51.004

45.39

56.61

37.71

64.29

Regression Analysis

0.863

Adjusted R²

0.808

n

8

R

0.929

k

2

Std. Error

4.687

Dep. Var.

y

ANOVA table

Source

SS

df

MS

F

p-value

Regression

693.0450

2  

346.5225

15.78

.0069

Residual

109.8300

5  

21.9660

Total

802.8750

7  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=5)

p-value

95% lower

95% upper

Intercept

22.8074

6.8384

3.335

.0207

5.2288

40.3861

x1

0.8460

0.1523

5.555

.0026

0.4545

1.2376

x2

-0.7053

0.2451

-2.877

.0347

-1.3353

-0.0752

Predicted values for: y

95% Confidence Interval

95% Prediction Interval

x1

x2

Predicted

lower

upper

lower

upper

50

20

51.004

45.39

56.61

37.71

64.29