Please solve all Evaluate lim x rightarrow infinity f (x) and lim x rightarrow -
ID: 3343784 • Letter: P
Question
Please solve all
Explanation / Answer
Q1.
(x)=(x^3+4)/(2x^3+sqrt(16x^6+3))=(1+4/x^3)/(2+sqrt(16x^6+3)/x^3)
case 1:
x tends to infinity:
x>0
Hence,
f(x)=(x^3+4)/(2x^3+sqrt(16x^6+3))=(1+4/x^3)/(2+sqrt(16+3/x^6))=(1+0)/(2+4)=1/6(ans)
x tends to -infinity:
x<0
Hence,
f(x)=(x^3+4)/(2x^3+sqrt(16x^6+3))=(1+4/x^3)/(2-sqrt(16+3/x^6))=(1+0)/(2-4)=-1/2(ans)
since root(a)/b=-root(a/b^2) when b<0
Q2.
f(x)=(sqrt(x^2+3x+5)-3)/(x-1)=(sqrt(1+3/x+5/x^2)-3/x)/(1-1/x)) when x>0
=(-sqrt(1+3/x+5/x^2)-3/x)/(1-1/x)) when x<0
when x tends to infinity:
sqrt(1)/1=1(ans)
when x tends to -infinity:
-sqrt(1)/1=-1(ans)
hence horizontal assymtotes are y=1 and y=-1
vertical assymtote can be x=1 (since dinominator not equal to 0)
for that we use the l hopitals rule:
we find LHL=RHL=5/6