Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Body weight Bench press 126 130 202 165 176 154 154 130 209 174 133 117 128 110

ID: 3361736 • Letter: B

Question

Body weight Bench press

126 130

202 165

176 154

154 130

209 174

133 117

128 110

168 149

152 114

157 138

188 157

219 184

213 161

205 170

218 161

219 179

137 124

124 135

133 131

212 157

186 155

125 121

138 122

193 152

162 144

215 173

142 137

196 168

149 159

219 163

3. 115 points I Previous Answers My Note An exercise science major wants to try to use body weight to predict how much someone can bench press. He collects the data shown below on 30 male students. Both quantities are measured in pounds Assignment 10q3 data a) What type of association does there appear to be between these two variables? O positive association O no association O can not be determined negative association b) Compute a 95% confidence interval for the average bench press of 150 pound males, what is the lower limit? Give your answer to two decimal places. c) compute a 95% confidence interval for the average bench press of 150 pound males, what is the upper limit? Give your answer to two decimal places. d) Compute a 95% prediction interval for the bench press of a 15 pound male what is the lower limit? Give your answer to two decima places e) compute a 95% prediction interval for the bench press of a 150 pound male, what is the upper limit? Give your answer to two decimal places.

Explanation / Answer

we can do this in R as shown below , The R snippet is as follows

# read the data into R dataframe
data.df<- read.csv("C:\Users\586645\Downloads\Chegg\bench.csv",header=TRUE)
str(data.df)

# perform anova analysis
a<- lm(Bench.press~ Body.weight,data=data.df)

#summarise the results
summary(a)


##
newdat <- data.frame(Body.weight= 150)

# 95% Confidence interval
predict(a,newdat,interval = "confidence",level=0.95)
# 95% Prediction interval
predict(a,newdat,interval = "prediction",level=0.95)

The result is

> summary(a)

Call:
lm(formula = Bench.press ~ Body.weight, data = data.df)

Residuals:
Min 1Q Median 3Q Max
-22.479 -7.414 1.631 5.710 24.118

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 55.56362 9.08100 6.119 1.33e-06 ***
Body.weight 0.53234 0.05142 10.353 4.45e-11 *** as the coefficient is positve hence there is a positive relation
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.64 on 28 degrees of freedom
Multiple R-squared: 0.7929,   Adjusted R-squared: 0.7855
F-statistic: 107.2 on 1 and 28 DF, p-value: 4.447e-11

The intervals are

> # 95% Confidence interval
> predict(a,newdat,interval = "confidence",level=0.95)
fit lwr upr
1 135.4143 131.0551 139.7734
> # 95% Prediction interval
> predict(a,newdat,interval = "prediction",level=0.95)
fit lwr upr
1 135.4143 115.1926 155.6359