Comment briefly. Does it look that multicollinearity may be a problem? If so, id
ID: 3365965 • Letter: C
Question
Comment briefly. Does it look that multicollinearity may be a problem? If so, identify the problematic pairs of variables.
Correlation: Inno3, Indischarg, Inrunoff, Inarea, Indensity, rec, Inprec Menu Correlations Inno3 Indischarg Inrunoff Inarea Indensity Indep Indischarg -0.380 0.013 0.015 0.922 -0.349 0.023 Inrunoff 0.056 0.726 0.854 0.453 0.000 0.003 Inarea Indensity0.870 -0.317 0.124 -0.349 0.433 0.024 -0.219 0.316 -0.371 0.163 0.041 0.016 -0.354 0.083 -0.291 0.021 0.602 0.061 0.254 0.715 0.133 0.105 0.000 0.400 0.000 0.659 0.000 0.686 0.000 -0.063 0.691 0.041 Indep Innprec Inprec 0.664 0.000 0.634 0.841 0.000 0.000 0.038 0.266 0.811 0.089 Innprec Inprec -0.297 0.056 Cell Contents Pearson correlation P-ValueExplanation / Answer
Result:
Does it look that multicollinearity may be a problem? If so, identify the problematic pairs of variables.
A common way to evaluate multicollinearity is with variance inflation factors (VIFs). There is no clear cut of correlation value for multicollinearity. We have to think of the problem only when high correlation between two variables if r0.90.
In this case high correlation is between inno3 and indensity is 0.870. Therefore there is no problem of multicollinearity.