Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Can someone solve this 6. Following are the published weights (in pound) of all

ID: 3366513 • Letter: C

Question

Can someone solve this

6. Following are the published weights (in pound) of all team members of the San Francisco 49ers from previous year. 177 205 210 210 232 205 185 185 178 210 206 212 184 174 185 242 188 212 215 247 241 223 220 260 245 259 278 270 280 295 275 285 290 272 273 280 285 286 200 215 185 230 250 241 190 260 250 302 265 290 276 228 265 a. Organize the scores from smallest to largest value b. Find the mediarn c. Find the first quartile d. Find the third quartile e. Find the range of the middle 50% (i.e., interquartile range) of the weights f. Assume this is a sample from the San Francisco 49ers football players. Find: i. The sample mean ii. The sample variance and standard deviation ii. The weight that is two standard deviations below the mean iv. Steve, a quarterback, played football, he weighed 205 pounds. How many standard deviations above or below the mean was he? g. The same year, the mean weight for the Dallas Cowboys was 240.08 pounds with a standard deviation of 44.38 pounds. Emmit weighed in at 209 pounds. With respect to their team, who was lighter, Steve or Emmit? How did you determine your answer?

Explanation / Answer

Answer (a)

Ordering the data from least to greatest, we get:

174   177   178   184   185   185   185   185   188   190   200   205   205   206   210   210   210   212   212   215 215   220   223   228   230   232   241   241   242   245   247   250   250   259   260   260   265   265   270   272 273   275   276   278   280   280   285   285   286   290   290   295   302

Answer (b)

There are 53 numbers in the data set.

Position of Media = (N+1)/2 = (53+1)/2 = 27

So median will be number at 27th position when data is organized from least to greatest:

174   177   178   184   185   185   185   185   188   190   200   205   205   206   210   210   210   212   212   215 215   220   223   228   230   232   241   241   242   245   247   250   250   259   260   260   265   265   270   272 273   275   276   278   280   280   285   285   286   290   290   295   302

The number at 27th position is 241. Thus, median for the given data set is 241.

Answer (c)

The first quartile (or lower quartile or 25th percentile) is the median of the bottom half of the numbers. The first half of data set includes all values coming before median in the data set organized from least to greatest.

First Half of Data Set (Sorted):
174 ; 177 ; 178 ; 184 ; 185 ; 185 ; 185 ; 185 ; 188 ; 190 ; 200 ; 205 ; 205 ; 206 ; 210 ; 210 ; 210 ; 212 ; 212 ; 215 ; 215 ; 220 ; 223 ; 228 ; 230 ; 232

There are 26 numbers in first half of data set (sorted)

So first quartile will be average of number at position 13 and 14 in First Half of Data Set (Sorted)

First Quartile = (205+206)/2 = 205.5

Answer (d)

The third quartile (or upper quartile or 75th percentile) is the median of the upper half of the numbers. The second half of data set includes all values coming after the median in the data set organized from least to greatest.

Second Half of Data Set (Sorted):
241 ; 242 ; 245 ; 247 ; 250 ; 250 ; 259 ; 260 ; 260 ; 265 ; 265 ; 270 ; 272 ; 273 ; 275 ; 276 ; 278 ; 280 ; 280 ; 285 ; 285 ; 286 ; 290 ; 290 ; 295 ; 302

There are 26 numbers in first half of data set (sorted)

So first quartile will be average of number at position 13 and 14 in Second Half of Data Set (Sorted)

First Quartile = (272+273)/2 = 272.5

We have solved 4 subparts of the given question.