Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The Nielsen Company reported that U.S. residents aged 18 to 24 years spend an av

ID: 3386720 • Letter: T

Question

The Nielsen Company reported that U.S. residents aged 18 to 24 years spend an average of 46.2 hours per month using the Internet on a computer.
You think this is quite low compared with the amount of time that students at your university spend using the Internet on a computer, and you decide to do a survey to verify this. You collect an SRS of n=40 students and obtain x¯¯=40.1 hours with s=28.6 hours

a) Report the 95% confidence interval for , the average number of hours per month that students at your university use the Internet on a computer.

Use software to calculation.

95% confidence interval (±0.001) is from  hours to  hours

(b) Use this interval to test whether the average time for students at your university is different from the average reported by Nielsen. Use the 5% significance level.

Explanation / Answer

a)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    40.1          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    28.6          
n = sample size =    40          
              
Thus,              
Margin of Error E =    8.863068962          
Lower bound =    31.23693104          
Upper bound =    48.96306896          
              
Thus, the confidence interval is              
              
(   31.23693104   ,   48.96306896   ) [ANSWER]

***********************

b)

As 46.2 is inside the confidence interval, then there is no significant evidence at 0.05 level that the true mean is different from the reported average by Nielsen.