Consider the system of equations: {x_1 + (2.3)x_2 - x_3 + 5x_4 =1 4x_1 + 5x_2 +
ID: 3572184 • Letter: C
Question
Consider the system of equations: {x_1 + (2.3)x_2 - x_3 + 5x_4 =1 4x_1 + 5x_2 + 6x_3 - (2.2)x_4 = 2 (3.1)x_1 + (2.2)x_2 + x_3 + 2x_4 = 3 x_1 + x_2 + x_3 + x_4 = 4. Solve it using the Matlab symbolic function solve. Consider the equation: x^5 - 2 * x^3 - x^2 + 0.25 = 0 Solve it using the solve function. Use also zero to solve it numerically with three different initial guesses: 2, 0. and 2 (recall from PA11 that you need to: 1) define a function related to the above equation, 2) pass the function handle to f zero). Compare with the symbolic solver.Explanation / Answer
solving using matlab
x = inv(A)*B
inv = inverse function in matlab
a)
>> A=[1 2.3 -1 5;4 5 6 -2.2;3.1 2.2 1 2;1 1 1 1;]
A =
1.0000 2.3000 -1.0000 5.0000
4.0000 5.0000 6.0000 -2.2000
3.1000 2.2000 1.0000 2.0000
1.0000 1.0000 1.0000 1.0000
>> B = [1;2;3;4;]
B =
1
2
3
4
>> x = inv(A)*B
x =
0.5980
-4.4459
4.7686
3.0793
>>