Mips architecture 1. (20 points) Assuming the IEEE 754 single precision format i
ID: 3594133 • Letter: M
Question
Mips architecture
1. (20 points) Assuming the IEEE 754 single precision format i. Decimal representation: a ii. Normalized binary representation: b × 2c ii Exponent bits: d (insert ' symbol every 4 bits) iv. Fraction bits: e (insert '' symbol every 4 bits) v. Hexadecimal representation: f (a) (10 points) Find the value of b, c, d, e, and f when you convert the decimal number a= 63.25 to the hexadecimal representation. (b) (10 points) Find the value of e, d, c, b, and a when you convert the hexadecimal number f = 0x2e92c3bf to the decimal representation.Explanation / Answer
Solution:
a)
First, we will convert 63.25 into binary representation
111111.01
let's change it into the normalized form
1.11111101 * 2^5
exponent= bias + biased exponent= 127 + 5= 132
Now,
d= 1000|0100
e= 1111|1101|0000|0000|0000|000
f= 0x427D0000
b)
0x2e92c3bf
in binary 0010 1110 1001 0010 1100 0011 1011 1111
d= 0101|1101, in decimal 93
e= 0010|0101|1000|0111|0111|111
Actual exponent= 127-93= 34
in binary 1.00100101100001110111111 * 2^34
= 100100101100001110111111 * 2^9
= 4924603904
Please upvote and raise your doubts within the comment.
Sign Exponent Mantissa 0 1000|0100 1111|1101|0000|0000|0000|000