Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Consider the following. (A computer algebra system is recommended. Round your an

ID: 3665928 • Letter: C

Question

Consider the following. (A computer algebra system is recommended. Round your answers to four decimal places.)
y' = 3cos(t) - 7y, y(0) = 1
(a) Find approximate values of the solution of the given initial value problem at t = 0.1, 0.2, 0.3, and 0.4 using the Euler method with h = 0.1.
y(0.1)   =   
y(0.2)   =   
y(0.3)   =   
y(0.4)   =
(b) Find approximate values of the solution of the given initial value problem at
t = 0.1, 0.2, 0.3, and 0.4 using the Euler method with h = 0.05.
y(0.1)   =   
y(0.2)   =   
y(0.3)   =   
y(0.4)   =
(c) Find approximate values of the solution of the given initial value problem at
t = 0.1, 0.2, 0.3, and 0.4 using the Euler method with h = 0.025.
y(0.1)   =   
y(0.2)


y(0.3)   =   
y(0.4)   =
(c) Find approximate values of the solution of the given initial value problem at
t = 0.1, 0.2, 0.3, and 0.4 using the Euler method with h = 0.025.
y(0.1)   =   
y(0.2)   =   
y(0.3)   =   
y(0.4)   =
(d) Find the solution y = (t) of the given problem.
y(t) =

Evaluate (t) at t = 0.1, 0.2, 0.3, and 0.4. (Round your answers to five decimal places.)
y(0.1)   =   
y(0.2)   =   
y(0.3)   =   
y(0.4)   =

Explanation / Answer

y' = 3cos(t) - 7y, y(0) = 1
(a) Find approximate values of the solution of the given initial value problem at t = 0.1, 0.2, 0.3, and 0.4 using the Euler method with h = 0.1.

SOL : given data

y'=3cos(t)-7y, y(0)=1,

t=0.1,0.2,0.3,0.4, h=0.1.

let f(t,y)=3 cos(t)-7y

y(0)=1

t0=0, y0=1.        equ..............1

sub equ........1 in the following

f0(0,1)=3cos0-7(1)

         =3-7 = - 4
y(0.1)   = ?

y1(0.1)=y0+hf0

y1(0.1)= 1+(0.1)(-4)

   = 1-0.4= 0.6.

y(0.2)   =?

y2(0.2)= y1 +hf1

f1 = f(0.1,0.6) =3Cos(0.1) - 7(0.6)

=2.9999 - 4.2

= -1.200000.

y2(0.2) = 0.6 +(0.1)(-1.20000)

        = 0.48.


y(0.3)   = ?

y3(0.3) =y2 +hf2

f2(0.2,0.48) = 3Cos(0.20) -7(0.48)

              = 2.99998 - 3.36

             = - 0.36001.

y3(0.3)= y2 +hf2

         = 0.48 + (0.1) (- 0.36001)

         =0.44399
y(0.4)   = ?

y4(0.4) = y3+ hf3

f3(0.3,0.44399)= 3Cos(0.30)-7(0.44399)

                      = -0.10797.

y4 (0.4) = 0.44399 + (0.1) (-0.10797)

           = 0.433193.

y(0.1) = 0.6

y(0.2) = 0.48

y(0.3) = 0.44399

y(0.4) = 0.433193.


(b) Find approximate values of the solution of the given initial value problem at
t = 0.1, 0.2, 0.3, and 0.4 using the Euler method with h = 0.05.
y(0.1)   =   
y(0.2)   =   
y(0.3)   =   
y(0.4)   =

SOL : given data

y'=3cos(t)-7y, y(0)=1,

t=0.1,0.2,0.3,0.4, h=0.05

let f(t,y)=3 cos(t)-7y

y(0)=1

t0=0, y0=1.        equ..............1

sub equ........1 in the following

f0(0,1)=3cos0-7(1)

         =3-7 = - 4
y(0.1)   = ?

y1(0.1)=y0+hf0

y1(0.1)= 1+(0.05)(-4)

   = 1-0.2= 0.8

y(0.2)   =?

y2(0.2)= y1 +hf1

f1 = f(0.1,0.8) =3Cos(0.1) - 7(0.8)

= - 2.600004

y2(0.2) = 0.8+(0.05)(-2.600004)

        = 0.66699
y(0.3)   = ?

y3(0.3) =y2 +hf2

f2(0.2,0.66699) = 3Cos(0.20) -7(0.66699)

             = - 1.68994

y3(0.3)= y2 +hf2

         = 0.66999 + (0.05) (- 1.68994)

         =0.585493
y(0.4)   = ?

y4(0.4) = y3+ hf3

f3(0.3,0.585493)= 3Cos(0.30)-7(0.585493)

                      = - 1.098492

y4 (0.4) = 0.585493 + (0.05) (-1.098492)

           = 0.53056

y(0.1) = 0.8

y(0.2) = 0.66999

y(0.3) = 0.585493

y(0.4) = 0.53056.


(c) Find approximate values of the solution of the given initial value problem at
t = 0.1, 0.2, 0.3, and 0.4 using the Euler method with h = 0.025.
y(0.1)   =   
y(0.2)
y(0.3)   =   
y(0.4)   =

SOL : given data

y'=3cos(t)-7y, y(0)=1,

t=0.1,0.2,0.3,0.4, h=0.025

let f(t,y)=3 cos(t)-7y

y(0)=1

t0=0, y0=1.        equ..............1

sub equ........1 in the following

f0(0,1)=3cos0-7(1)

         =3-7 = - 4
y(0.1)   = ?

y1(0.1)=y0+hf0

y1(0.1)= 1+(0.025)(-4)

   = 1-0.1= 0.9

y(0.2)   =?

y2(0.2)= y1 +hf1

f1 = f(0.1,0.9) =3Cos(0.1) - 7(0.9)

= - 3.30000

y2(0.2) = 0.9+(0.025)(-3.30000)

        = 0.8175
y(0.3)   = ?

y3(0.3) =y2 +hf2

f2(0.2,0.66699) = 3Cos(0.20) -7(0.8175)

             = - 2.72251

y3(0.3)= y2 +hf2

         = 0.8175 + (0.025) (- 2.72251)

         =0.74943
y(0.4)   = ?

y4(0.4) = y3+ hf3

f3(0.3,0.74943)= 3Cos(0.30)-7(0.74943)

                      = - 2.24605

y4 (0.4) = 0.74943 + (0.025) (-2.24605)

           = 0.69327

y(0.1) = 0.9

y(0.2) = 0.8175

y(0.3) = 0.74943

y(0.4) = 0.69327.


(c) Find approximate values of the solution of the given initial value problem at
t = 0.1, 0.2, 0.3, and 0.4 using the Euler method with h = 0.025.
y(0.1)   =   
y(0.2)   =   
y(0.3)   =   
y(0.4)   =

SOL : given data

y'=3cos(t)-7y, y(0)=1,

t=0.1,0.2,0.3,0.4, h=0.025

let f(t,y)=3 cos(t)-7y

y(0)=1

t0=0, y0=1.        equ..............1

sub equ........1 in the following

f0(0,1)=3cos0-7(1)

         =3-7 = - 4
y(0.1)   = ?

y1(0.1)=y0+hf0

y1(0.1)= 1+(0.025)(-4)

   = 1-0.1= 0.9

y(0.2)   =?

y2(0.2)= y1 +hf1

f1 = f(0.1,0.9) =3Cos(0.1) - 7(0.9)

= - 3.30000

y2(0.2) = 0.9+(0.025)(-3.30000)

        = 0.8175
y(0.3)   = ?

y3(0.3) =y2 +hf2

f2(0.2,0.66699) = 3Cos(0.20) -7(0.8175)

             = - 2.72251

y3(0.3)= y2 +hf2

         = 0.8175 + (0.025) (- 2.72251)

         =0.74943
y(0.4)   = ?

y4(0.4) = y3+ hf3

f3(0.3,0.74943)= 3Cos(0.30)-7(0.74943)

                      = - 2.24605

y4 (0.4) = 0.74943 + (0.025) (-2.24605)

           = 0.69327

y(0.1) = 0.9

y(0.2) = 0.8175

y(0.3) = 0.74943

y(0.4) = 0.69327.


(d) Find the solution y = (t) of the given problem.
y(t) =

Evaluate (t) at t = 0.1, 0.2, 0.3, and 0.4. (Round your answers to five decimal places.)
y(0.1)   =   
y(0.2)   =   
y(0.3)   =   
y(0.4)   =

SOL: IN given problem sufficient data is not availiable.