Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

IN JAVA. Suppose that the initial contents of the values array in Shuffler.java

ID: 3686449 • Letter: I

Question

IN JAVA. Suppose that the initial contents of the values array in Shuffler.java are {1, 2, 3, 4}. For what sequence of random integers would the efficient selection shuffle change values to contain{4, 3, 2, 1}? I AM LOOKING FOR A SEQUENCE OF NUMBERS.

Shuffler.java:

/**
* This class provides a convenient way to test shuffling methods.
*/
public class Shuffler {

   /**
   * The number of consecutive shuffle steps to be performed in each call
   * to each sorting procedure.
   */
   private static final int SHUFFLE_COUNT = 1;

   /**
   * The number of values to shuffle.
   */
   private static final int VALUE_COUNT = 4;

   /**
   * Tests shuffling methods.
   * @param args is not used.
   */
   public static void main(String[] args) {
       System.out.println("Results of " + SHUFFLE_COUNT +
                               " consecutive perfect shuffles:");
       int[] values1 = new int[VALUE_COUNT];
       for (int i = 0; i < values1.length; i++) {
           values1[i] = i;
           }
       for (int j = 1; j <= SHUFFLE_COUNT; j++) {
           perfectShuffle(values1);
           System.out.print(" " + j + ":");
           for (int k = 0; k < values1.length; k++) {
               System.out.print(" " + values1[k]);
           }
           System.out.println();
       }
       System.out.println();

       System.out.println("Results of " + SHUFFLE_COUNT +
                               " consecutive efficient selection shuffles:");
       int[] values2 = new int[VALUE_COUNT];
       for (int i = 0; i < values2.length; i++) {
           values2[i] = i;
           }
       for (int j = 1; j <= SHUFFLE_COUNT; j++) {
           selectionShuffle(values2);
           System.out.print(" " + j + ":");
           for (int k = 0; k < values2.length; k++) {
               System.out.print(" " + values2[k]);
           }
           System.out.println();
       }
       System.out.println();
   }


   /**
   * Apply a "perfect shuffle" to the argument.
   * The perfect shuffle algorithm splits the deck in half, then interleaves
   * the cards in one half with the cards in the other.
   * @param values is an array of integers simulating cards to be shuffled.
   */
   public static void perfectShuffle(int[] values) {
       /* *** TO BE IMPLEMENTED IN ACTIVITY 3 *** */
   }

   /**
   * Apply an "efficient selection shuffle" to the argument.
   * The selection shuffle algorithm conceptually maintains two sequences
   * of cards: the selected cards (initially empty) and the not-yet-selected
   * cards (initially the entire deck). It repeatedly does the following until
   * all cards have been selected: randomly remove a card from those not yet
   * selected and add it to the selected cards.
   * An efficient version of this algorithm makes use of arrays to avoid
   * searching for an as-yet-unselected card.
   * @param values is an array of integers simulating cards to be shuffled.
   */
   public static void selectionShuffle(int[] values) {
       /* *** TO BE IMPLEMENTED IN ACTIVITY 3 *** */
   }
}

Explanation / Answer

Shuffler.java
public class Shuffler {

   private static final int SHUFFLE_COUNT = 5;

   private static final int VALUE_COUNT = 10;

   /**
   * Tests shuffling methods.
   * @param args is not used.
   */
   public static void main(String[] args) {
       System.out.println("Results of " + SHUFFLE_COUNT + " consecutive perfect shuffles:");
       int[] values1 = new int[VALUE_COUNT];
       for (int i = 0; i < values1.length; i++) {
           values1[i] = i;
           }
       for (int j = 1; j <= SHUFFLE_COUNT; j++) {
           values1 = perfectShuffle(values1);
           System.out.print(" " + j + ":");
           for (int k = 0; k < values1.length; k++) {
               System.out.print(" " + values1[k]);
           }
           System.out.println();
       }
       System.out.println();

       System.out.println("Results of " + SHUFFLE_COUNT + " consecutive efficient selection shuffles:");
       int[] values2 = new int[VALUE_COUNT];
       for (int i = 0; i < values2.length; i++) {
           values2[i] = i;
           }
       for (int j = 1; j <= SHUFFLE_COUNT; j++) {
           values2 = selectionShuffle(values2);
           System.out.print(" " + j + ":");
           for (int k = 0; k < values2.length; k++) {
               System.out.print(" " + values2[k]);
           }
           System.out.println();
       }
       System.out.println();
   }


   /**
   * Apply a "perfect shuffle" to the argument.
   * The perfect shuffle algorithm splits the deck in half, then interleaves
   * the cards in one half with the cards in the other.
   * @param values is an array of integers simulating cards to be shuffled.
   */
   public static int[] perfectShuffle(int[] values) {
       int[] tVal = new int[values.length];
       int c = 0;
       for (int i = 0; i < (values.length + 1) / 2; i++) {
           tVal[c] = values[i];
           c += 2;
       }
       c = 1;
       for (int i = (values.length + 1) / 2; i < values.length; i++) {
           tVal[c] = values[i];
           c += 2;
       }
       return tVal;
   }

   public static int[] selectionShuffle(int[] values) {
       for (int i = values.length - 1; i > 0; i--) {
           int t = (int) Math.round(Math.random() * i);
           int tmp = values[i];
           values[i] = values[t];
           values[t] = tmp;
       }
       return values;
   }
}


sample output
Results of 5 consecutive perfect shuffles:                                                                                                                  
1: 0 5 1 6 2 7 3 8 4 9                                                                                                                                    
2: 0 7 5 3 1 8 6 4 2 9                                                                                                                                    
3: 0 8 7 6 5 4 3 2 1 9                                                                                                                                    
4: 0 4 8 3 7 2 6 1 5 9                                                                                                                                    
5: 0 2 4 6 8 1 3 5 7 9                                                                                                                                    
                                                                                                                                                            
Results of 5 consecutive efficient selection shuffles:                                                                                                      
1: 2 6 0 9 4 3 8 1 5 7                                                                                                                                    
2: 9 3 2 8 1 4 6 7 0 5                                                                                                                                    
3: 9 1 2 8 6 3 5 4 0 7                                                                                                                                    
4: 5 7 4 3 2 6 1 9 0 8                                                                                                                                    
5: 0 4 2 1 3 8 9 6 5 7